

Table of Contents

PEISPECIIVES ..o 6
NESI EXECULIVE SUMIMAIY ...eiiiiiiiiiieiiititiee e ittt e e e sttt e e e ettt e e s st b et e e e s asbe e e e e e st be e e e e e aabbeeeeeaanbeeeeeeabrereeeann 7
Part 5: DEVEIOPEr GUILANCEooiiiiiiiiiie ittt e e sttt e e e e bbbt e e e s sbbe e e e e s sabbeeeesanbeeeeesane 9

Technical GUIdANCE AN TACHCS ...oooiiveieiiiieiiiie et b et ab e snr e snreeesnneees 10
Standard Interface DOCUMENTALIONoiiiiiiiiiiiiiiiiii e 11
Publish and Insulate PUblic INTEIfACESeoiiiiiiiiii e 13
Vo] 1o [0] (=T = oI D LY o | o PSSR 14
Implement a Component-Based ArChiteCUIec.eeviiiiiiiiieiiiiee e 19
Automate the Software Build ProCESScooiiiiiiiiiiiiii e 20

T g P 1o] o I 1= ST PP U UPPPTTOUPTPPRP 21
HUMaN-ComPULEr INTEIACLIONoiuiiiiiiiiiiiee ettt e st e e e s eee e 23

Designing User Interfaces for Internationalizationcccccoiiiiiiiiiiiiiiee e 25
Designing User Interfaces for ACCesSIbIlityccvvvviiiiiieeiiii e 26
Human Factor Considerations for Web-Based User Interfacescccccoovcvvveeiniiieeennnnnn 27
Browser-BasSed ClIENLSccoiuiiiiiiiiiiiee ettt st s e e e e ebb e e e e b e e e e enneee 30
DAY 1 = =T 3T [T o PRSP 31
ACHIVE SEIVEN PAgES (ASP) ...ttt 32
Active Server Pages for .NET (ASP.NET) ...ocuiiiiiiiiie et 33
Java Server PAgeS (JSP) .uuuuiiiiiiiii ittt et r e e e e e e e e e annrne 34
SEYIE SNEELS .t e e 35
WED POFAIS ...oiiieiiiie ettt e et e e s st e e s e a b e e e e e nnbe e e e e e anenes 36
THICK CHENES .ottt ettt st e st e e s be e e sbe e e s snneeenbne e e snreeenns 37
[T (o | LT = OO TP PP PP PUPPPPP 38
TS EST= Vo LT PP PR 40
Message-Oriented Middleware (MOM)cccuiiiiiiiiiee e e e e e e 41
Message-Based APPIICALIONScoiiiiiiiiiiiiii et 43
Messaging With MSMQcoiiiiiiiiei et e e st e e aneeee 49
WED SEIVICES .ttt e e et e e e e nne e 50

WED SEIVICES WILN (NET ..ottt e e e e e e e e e e st e s saa e e seaa s eesaaeaees 53

Web Services COMPIIBNCEcoooiiiiiiiie et e e e e e e e e rnb b e eeeeas 59

LAY 2T L SR 60
INSUIALION AN STIUCTUIE ...eeiiiiiie et nn e 61

=y o] gl o F= T g o |10V TR T TSP PPPPRRPP 62
Universal Description, Discovery, and Integration (UDDI)ccoccvviieiiiieiiiniiiieee e, 66
Java EE ENVIFONMENToiiiiiiiiiiie ittt ettt et n et e s 68
INET FFAMEWOTK .ottt ettt e e s et e e e e e e e nnnbe e e e e ennee 71
L@] 2 = 73
Software Communication ArChItECIUIEccueviiiiiiiiie e 75
Data Distribution SErviCe (DDS)uiiiiiiiiiiiieiai ittt e e e e e e e e e e e reeeeaeas 76
Decoupling Using DDS and Publish-SUDSCIHDEcooiiiiiiiiiiii e 81
DDS QUAIILY Of SEIVICE .uuviiiiiiiieieii ittt e e e e e e e s e e e e e e e e e e e s e s senenareaneees 82
DDS Data-Centric Publish-Subscribe (DCPS)uuiiiiiiiiiiiaiiiiieieeeeeee e 84
DDS Domains - Global Data SPACEScccoiiiiiiiiiiiiiiie et 86
Reading/Writing Objects within @ DDS DOMAINcccccuviiiiiiiieee e e e e e e 88
Messaging Within @ DDS DOMAINcooiiiiiiiiiiiieiieee et eee e e e e e 90

DDS Data Local Reconstruction Layer (DLRL)cooiiiiiiiiiiiiie et 92
(D=1 - B T PP TP PSP PRSP PTRP 93
Decouple from APPHCALIONS ..ot e e e e e e e e e e e eeaaaae s 94
Database IMpPlemMENTALIONSuiiiiiiiiiie e s ee e e anneeees 95
Database DEVEIOPIMENTuiiiiiiiiieie e e e e e e e e e s e e s e e e e e aaaeeeseasnnrrneeees 96
RDBMS INTEINAIS ...ttt e st e e et e e s s b e e e e e e nnnneas 97
(@)Y =T = 1(od 1T o I @ o g (ot =T o] (= PSPPI 99
DALAL ..o 100
KIMIL oo oo oo oot e e et ettt ettt b e b b e e e et oo e e e e e e eeeeeeeeteeeerebebrnbnnnnn s 102
XML SYNTAX ittt e e e e e e e e e e et e e e e e e e s 103

XML SEMANLICS ..oiiitiieiiiie ettt ettt e e st e b e e s b e nere e e 104

XML INStaNCe DOCUMENTSoviiiiiiiiieeiiiiiiiiiiire et 105

XML Schema DOCUMENTScoiiiiiiiiiieiiiiieee ettt ettt e e e e e 106

DEfiNING XML TYPES orviiiiiiieeeei i ittt e e e e s e e s e e e e e e e e e e s e e st br e e e eeaaaeeas 107

XML SCHEMA FllES ..veieeieee et e e e e e e e e e e e eaas 108

USING XML NAMESPACES ...eevieiieeeeeiiiiiiiiiiieeeeeeee e e s e s sssiistaeaeeeeaeae e e s s s ssnsrssaneeeeeaens 109

Defining XML SCREMASouiiiiiiiiiaeiii e 110
Versioning XML SChemMaSccooiiiiiiiiiii e 111

Using XML SubStitUtIoN GrOUPSccoeiiiiiiiiiiiiieeieee e e e e e e ssiiitaere e e e e e e e e e e e snnnnnenees 112

XML PrOCESSING ...uueetttteeeeteeae e ettt et e e e e e e e ettt e e e e e e e e e e e e nbabbe et e eeaaaaeeesaaannnbeseeees 113
D265 T IR USSP 114
XPALN bbb 116
PArsing XML ...ttt e aanae 117

XML VAlIAALION .ottt e e e aaree e 118
[T = Lo F= L= W =T 1] 1 Y/ PEEEPRRR 119
(D= 1= WY (o To =1 10T PP PPUPPPPRURTTP 122
1= =T - L = PO PT PO PPPPPUPPPR 123
Y=ol U]] SRR 125
General APPlICAtION SECUILYuuiiiiiiiiiiie et e e e e eeeeaaeas 127
Public Key Infrastructure (PKI) and PK Enable Applicationsccccccceveveeeiiiiiiinnnee. 129
KEY MANAGEIMENT ...eeiiiiieiiiie ettt e e e et e e e e e et s e e e e e et e e e e e eebbaneeaeees 130
ENCIYPLION SEIVICES ...eiiiiiiiiiiiiie ettt ettt et e e e e e e e e s e st bbb eeeeeeaaaeeeeaaannes 131
Certificate PrOCESSINGvveeiieiiiiiie ittt e et e e e nneees 132
Security Assertion Markup Language (SAML)eevvveeeiiiiiicciieeee e 134
(D1 o] o @0] 1 41 o101 1] o To [P TP PPPRPRTT 135
APL SECUIMLY .ttt ettt e e ettt e e e e sabb et e e e e nbn e e e e e anenee 136
JAVA SECUILY .eeiiiieeiii it e e e e s e s et e e e e e e e e e s s s e st b e reaereaaaeeaaaan 137
Application RESOUICE SECUIMLYuueiiiiiiiiiieiee ettt e e e e e e e eabb e 138
NEWOIK COMPULING .etiieeee it et et e et e e e e et b e e e e enebeas 139
ENterpriS€ COMPULING ...vvvrieiiiieeeeiiiiiiiiieee e e e e e e e e s s s s e e e e e e e e e e s s s sanrbnrerereaeaeeesssnnnnnes 140
INDI SECUIILY .teeeieettee ettt ettt et e e e e e e e s s bbb et e et aaaaeeeeesannnnbenneees 142

D= = N 1= S TP PP PTPPRRP 143
RDBMS SECUILY ..cuvviiitieiiiteteesiie ettt sttt sttt ettt et esba et sane e nbeesaneen 144

LDAP SECUILY .ottt et e e e e e et e et e e e e e e e e e s anbbeeeeeeeaaaaaas 145

XML WED SEIVICE SECUIY ..eeiiiiiiiiiie ittt 146
MODIIE COAER ...t 149

SMANT CArd LOGON ...ttt e et et e e e e e e e e e e s bt e be e e e e e eaeeeeesaannnes 153

Secure Coding and Implementation PractiCeScccceeeiiiiiiiiiiiiiieiieee e 154

Apply Principle Of Least PriVIIEge ... 155

Practice Defense in DEPheeiiiii e 156

Apply Secure Coding Standardsccccciiiiiiieeiee e 157

Apply Quality Assurance to Software Developmentccccvveiiiiniiiiiiiiiieeeeeeeeeee 158

Validate INPUL ..ottt e et e e e nnnnaeeas 159

Heed Compiler WarNINGScooeoiiiiiiciieeee ettt e e e e e e s s e e e e e e e e e e s anannes 160

HaNAIE EXCEPLIONS ...ttt e e e e e e e e e b e eeaeas 161

Programming LANGQUABGESoouueeiieiiiiiieieiiiie e e ettt e e s eie et e e e sibee e e e s saabe e e e e s anbee e e e s snbbeeaesannrneeas 162

L0 PP PP PP PP 163

C++ Namespaces and MOUUIEScooiiiiiiiiiiiiiiie e 164

C++ Operator OVEIIOATINGuuveiiiiiiiiiee ettt 165

Crt HEAET FIES ..oeiiiiiiie e 166

[V | OO TR P PP P PPPTRPPPPTPTPRPN 167

VHDL CodiNG QN0 DESIGN ..ceeiueiiiieiiitiiei ettt st ettt e e e e e anneas 168

VHDL TESIDENCKN ..ottt 169

VHDL SynthesSizable DeSIGNcooiiii it 170

VHDL SYNChroNOUS DESIGNeeiiiiiiiiiiiei ittt 171

Service Definition FramMeWOIKoooiiiiiiiiiiiie et 172
Guidance and Best Practice Details ..., 180
GIOSSAIY oo 616

RETEICINCES ..o ettt e e e et 676

Perspectives

Part 5: Developer Guidance

P1117: NESI Executive Summary

Net-Centric Enterprise Solutions for Interoperability (NESI) provides, for all phases of the acquisition of net-centric
solutions, actionable guidance that meets DoD Network-Centric Warfare goals. The guidance in NESI is derived from
the higher level, more abstract concepts provided in various directives, policies and mandates such as the Net-Centric
Operations and Warfare Reference Model (NCOW RM) [R1176] and the ASD(NII) Net-Centric Checklist [R1177]. As
currently structured, NESI implementation covers architecture, design and implementation; compliance checklists; and a
collaboration environment that includes a repository.

More specifically, NESI is a body of architectural and engineering knowledge that guides the design, implementation,
maintenance, evolution, and use of the Information Technology (IT) portion of net-centric solutions for military application.
NESI provides specific technical recommendations that a DoD organization can use as references. Stated another way,
NESI serves as a reference set of compliant instantiations of these directives.

NESI is derived from a studied examination of enterprise-level needs and, more importantly, from the collective practical
experience of recent and on-going program-level implementations. It is based on today's technologies and probable near-
term technology developments. It describes the practical experience of system developers within the context of a minimal
top-down technical framework. Most, if not all, of the guidance in NESI is in line with commercial best practices in the area
of enterprise computing.

NESI applies to all phases of the acquisition process as defined in DoD Directive 5000.1 [R1164] and DoD Instruction
5000.2 [r1165] and to both new and legacy programs. NESI provides explicit counsel for building in net-centricity from the
ground up and for migrating legacy systems to greater degrees of net-centricity.

NESI subsumes a number of references and directives; in particular, the Air Force C2 Enterprise Technical Reference
Architecture (C2ERA) and the Navy Reusable Applications Integration and Development Standards (RAPIDS). Initial
authority for NESI is per the Memorandum of Agreement between Commander, Space and Naval Warfare Systems
Command (SPAWAR); Navy Program Executive Officer, C4l & Space (now PEO C4l); and the United States Air Force
Electronic Systems Center (ESC), dated 22 December 2003, Subject: Cooperation Agreement for Net-Centric Solutions
for Interoperability (NESI). The Defense Information Systems Agency (DISA) formally joined the NESI effort in 2006.

Content Structure

Perspectives NESI Perspectives describe a topic and
encompass related, more specific Perspectives
or encapsulate a set of Guidance and Best
Practice details, Examples, References, and
Glossary entries that pertain to the topic.

Guidance NESI Guidance is in the form of
atomic, succinct, absolute and definitive
Statements related to one or more Perspectives.
Each Guidance Statement is linked to
Guidance Details which provide Rationale,
relationships with other Guidance or Best
Practices, and Evaluation Criteria with one
or more Tests, Procedures and Examples
which facilitate validation of using the
Guidance through observation, measurement
or other means. Guidance Statements are
intended to be binding in nature, especially if
used as part of a Statement of Work (SOW) or
performance specification.

Best Practices NESI Best Practices are advisory in nature
to assist program or project managers and
personnel. Best Practice Details can have all
the same parts as NESI Guidance. The use of

Page 7

Part 5: Developer Guidance

Examples

Glossary

References

Releasability Statement

NESI Net-Centric Implementation v2.2 has been cleared for public release by competent authority in accordance

NESI Best Practices are at the discretion of the
program or project manager.

NESI Examples illustrate key aspects of
Perspectives, Guidance, or Best Practices.

NESI Glossary entries provide terms,
acronyms, and definitions used in The context
of NESI Perspectives, Guidance and Best
Practices.

NESI References identify directives,
instructions, books, Web sites, and other
sources of information useful for planning or
execution.

with DoD Directive 5230.9 [R1232] and is granted Distribution Statement A: Approved for public release;
distribution is unlimited. Obtain electronic copies of this document at http://nesipublic.spawar.navy.mil.

Vendor Neutrality

The NESI documentation sometimes refers to specific vendors and their products in the context of examples and

lists. However, NESI is vendor-neutral. Mentioning a vendor or product is not intended as an endorsement, nor is a
lack of mention intended as a lack of endorsement. Code examples typically use open-source products since NESI

is built on the open-source philosophy. NESI accepts inputs from multiple sources so the examples tend to reflect
whatever tools the contributor was using or knew best. However, the products described are not necessarily the
best choice for every circumstance. Users are encouraged to analyze specific project requirements and choose

tools accordingly. There is no need to obtain, or ask contractors to obtain, the tools that appear as examples in this
guide. Similarly, any lists of products or vendors are intended only as references or starting points, and not as a list

of recommended or mandated options.

Disclaimer

Every effort has been made to make NESI documentation as complete and accurate as possible. Even with
frequent updates, this documentation may not always immediately reflect the latest technology or guidance. Also,
references and links to external material are as accurate as possible; however, they are subject to change or may
have additional access requirements such as Public Key Infrastructure (PKI) certificates, Common Access Card

(CAC) for user identification, and user account registration.

Contributions and Comments

NESI is an open project that involves the entire development community. Anyone is welcome to contribute
comments, corrections, or relevant knowledge to the guides via the Change Request tab on the NESI Public site,
http://nesipublic.spawar.navy.mil, or via the following email address: nesi@spawar.navy.mil.

Page 8

http://nesipublic.spawar.navy.mil

Part 5: Developer Guidance

P1118: Part 5: Developer Guidance

Part 5: Developer Guidance provides chief engineers and software developers with detailed implementation guidance
for applications, services, and data. This effort leverages current best practices from the software development community
to enable the Department of Defense (DoD) to create net-centric, extensible, scalable enterprise solutions. The goal is to
modernize and improve the development of net-centric applications and services as critical warfighter capabilities.
Software developers can choose to use published applications via interfaces and services or build applications and
services that interface with the infrastructure. Any application that must interoperate in the DoD Net-Centric Enterprise
should be built and maintained in accordance with the standards, policies, and processes within this guide.

NESI Part 5 provides developers with detailed software development guidance, best coding practices, lessons learned,
and code samples. It serves as a reference, not a document to be read cover to cover. The guidance in NESI Part 5 is
designed to do the following:

. Permit independent paces of development and change on each side of the enterprise, reducing risk and impacts of
changes to application developers

. Implement connection strategies that extend the life and reach of legacy applications while legacy application
developers restructure their systems

Program managers and chief engineers will find the overview and guidance sections helpful while doing the following:

. Directing their programs and activities to build systems (use this information in combination with NESI Part 2:
ASD(NII) Checklist Guidance and NESI Part 4: Node Guidance)

. Reviewing Statements of Work (Developers may also use the information for this purpose)
. Reviewing deliverables for compliance

. Migrating legacy systems to the net-centric environment(use this information in combination with NESI Part 3:
Migration Guidance)

Page 9

Part 5: Developer Guidance
Part 5: Developer Guidance > Technical Guidance and Tactics

P1072: Technical Guidance and Tactics

This Complex Perspective contains guidance in the following areas.

High-Level guidance for developing Net-Centric software:
. Publish and Insulate Public Interfaces

. Implement a Component-Based Architecture

. Automate the Software Build Process

Interface Design:

. Public Interface Design

. Standard Interface Documentation

Page 10

Part 5: Developer Guidance
Part 5: Developer Guidance > Technical Guidance and Tactics > Standard Interface Documentation

P1069: Standard Interface Documentation

This section provides guidance for documenting source code. The references provide links on documenting code for the
Java and the Microsoft .NET environments. For all other languages, configuration files, and XML files, please follow the
associated language-specified format for documentation.

Javadoc commands

The Javadoc tool parses special tags when they are embedded within a Javadoc comment. These doc tags enable a
programmer to autogenerate a complete, well-formatted API from the source code. The tags start with an ampersand (@)
and are case-sensitive; an "a" is different from an "A."

A tag must start at the beginning of a line, after any leading spaces and an optional asterisk, or it will be treated as normal
text. By convention, group tags with the same name together. For example, put all @ ee tags together.

Guidance

e (G1027: Internally document all source code developed with DoD funding.
Examples

Sample Java code with Javadoc

This is a sample Enterprise Java Bean with Javadoc tags for the API that implements a method to set a string to
"Hello." Use this example to generate documents from the command line and from Ant.

package comtestejb;
import javax. ejb. Sessi onBean;
import javax. ej b. Sessi onCont ext ;
/**
* This session bean denpbnstrates a sinple session bean
*/
public class Test Sessi onBean i npl ements Sessi onBean {
private String test = "hello fromthe test ejb";
public Test SessionBean(){ }
public void set Sessi onCont ext (Sessi onContext sc){ }
public void ejbActivate(){ }
public void ejbPassivate(){ }
public void ej bRemove(){ }
public void ejbCreate(){ }
/**
* This method returns the test string
* @eturn the value of test
*/
public String getTest() {
return test;
} // End get Test
/**
* This method sets the test string
* @aram String t
*/
public void setTest(String t) {
test =t;
} // End setTest
} // End Test Sessi onBean
package comtestejb;
import javax.ejb. Sessi onBean;
import javax. ej b. Sessi onCont ext ;
/**
* This session bean denpbnstrates a sinple session bean
*/
public class Test Sessi onBean i npl ements Sessi onBean {
private String test = "hello fromthe test ejb";
public Test SessionBean(){ }

Page 11

Part 5: Developer Guidance

public void set Sessi onCont ext (Sessi onCont ext sc){ }
public void ejbActivate(){ }
public void ejbPassivate(){ }
public void ejbRenmove(){ }
public void ejbCreate(){ }
/**
* This nethod returns the test string
* @eturn the value of test
*/
public String getTest() {
return test;
} // end get Test
/**
* This nmethod sets the test string
* @aram String t

*/
public void setTest(String t) {
test =t;

} // End set Test
} // End Test Sessi onBean

Sample C# code with documentation tags

This sample .NET application shows the necessary comment structure to generate the interface documentation.

usi ng System
nanespace Hel | owor| dNanespace {

55; Hel lo Worl d Exanpl e C# application

i:: /aSS Hel | owor | dd ass {
55; The main entry point for the application.
{/S{I'AThread]

static void Main(string[] args) {
/1 Loop through sone indices and display the val ue
/1 from GetHel | oText(...)

for (int expressionCounter = -1; expressionCounter < 4; expressionCounter ++) {
Consol e. Qut. WitelLine (expressionCounter.ToString("#0") + ": " +
Get Hel | oText (expressi onCounter));
} // End for

Consol e. I n. Read(); // Pause the console
} // End main
111
/1l Gets a "hello" string given an index
111
111
/11 1ndex of the "hello" string to retrieve
111
111
/1l A "hello"string if the index is valid, otherw se
/11 an error
111
static stringGetHelloText(int index) {
string[] hell oExpressions = new string[] {

"Hello World", "Hello AIl", "Howdy"

IE

if (index < 0 || index >=hell oExpressions. Length) {
return "Error";

} /] End if

el se {

ret ur nhel | oExpr essi ons [i ndex];
} // End else
} // End get Hello
} // EndHel | oWorl dd ass
} // End Hel | oWor| dNanespace

Page 12

Part 5: Developer Guidance

Part 5: Developer Guidance > Technical Guidance and Tactics > Publish and Insulate Public Interfaces

P1062: Publish and Insulate Public Interfaces

This Perspective lists high-level guidance for implementing public interfaces.

Guidance
e (G1001: Use formal standards to define public interfaces.
¢« (G1002: Separate public interfaces from implementation.
« (G1003: Separate the contents of application libraries that are to be shared from libraries that are to be used
internally.
e (G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.

 (G1005:

e G1007:

+ (G1008:
« Gl010:
+ Glo22:
« G1073:
« (Glo018:

¢ (G1019:

Separate infrastructure capabilities from mission functions.

Ensure that applications use open, standardized, vendor-neutral API(S).
Isolate platform-specific interfaces and vendor dependencies.

Use open-standard logging frameworks.

Insulate public interfaces from compile-time dependencies.

Isolate vendor extensions to enterprise-services standard interfaces.
Assign version identifiers to all public interfaces.

Deprecate public interfaces in accordance with a published deprecation policy.

Page 13

Part 5: Developer Guidance
Part 5: Developer Guidance > Technical Guidance and Tactics > Public Interface Design

P1060: Public Interface Design

A public interface is the logical point at which independent software entities interact. The entities may interact with

each other within a single computer, across a network, or across a variety of other topologies. It is important that public
interfaces be stable and designed to support future changes, enhancements, and deprecation in order for the interaction
to continue.

software software
Entity

A

11007

Guidance
e (G1213: Provide an architecture design document.
e G1215: Provide a coding standards document.
« (G1216: Provide a software release plan document.
e G1214: Provide a document with a plan for deprecating obsolete interfaces.
e (G1021: Create fully insulated classes.
e (G1022: Insulate public interfaces from compile-time dependencies.
e (G1208: Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.
e (G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.
e (G1018: Assign version identifiers to all public interfaces.

« (G1019: Deprecate public interfaces in accordance with a published deprecation policy.

Best Practices

« BP1240: Present complete and coherent sets of concepts to the user.
« BP1241: Design statically typed interfaces.

« BP1242: Minimize an interface's dependencies on other interfaces.
« BP1243: Express interfaces in terms of application-level types.

« BP1244: Use assertions only to aid development and integration.
Examples

Page 14

Part 5: Developer Guidance
Java Interface

Interface Classes

Create interface classes as shown in the following sample:

public interface weather {
public String getlLocation();
public String getWnd();
public String getVisibility();
public String get Tenperature();
public String getPressure();

} // End weather interface

Implementation of the interface

There are different ways to implement the interface. This approach uses a plug-in strategy.

Interface Implementation

public class airPortWather inplenments weather {
airPortWeather() { }

public String getlLocation() {
/'l business |ogic goes here .
return strlLocation;

} // End getlLocation

public String getWnd() {
/'l business |ogic goes here .
return strWnd;

} // End getWnd

public String getVisibility() {
/'l business |ogic goes here .
return strVisibility;

} // End getVisibility

public String get Tenperature() {
/'l business |ogic goes here .
return strTenperature;

} /1 End get Tenperature

public String getPressure() {
/'l business |ogic goes here .
return strPressure;

} // End getPressure

} // End airPortWat her

Interface implementation plug-in

public class weatherReport {

private weather nyW« = nul | ;

weat her Report () {

} // End constructor

public void addWeat her Provi der (weat her | cl WkProvi der) {
this. myWw = | cl WPr ovi der;

} // End addWeat her Provi der

public String getlLocation() {
return (this.myW. getlLocation());

} // End getlLocation

public String getWnd() {
return (this.myW.getWnd());

} // End getWnd

public String getVisibility() {
return (this.myW. getVisibility());

} // End getVisibility

public String get Tenperature() {
return (this.myW. get Tenperature());

} /1 End get Tenperature

Page 15

Part 5: Developer Guidance

public String getPressure() {
return (this.myW.getPressure());
} // End getPressure
} // End weat her Report cl ass

These examples use protocol classes/interface classes and an implementation class through composition
to decouple the interface implementation. There are other ways to implement the interfaces to get effective
insulation. The specifics are application-dependent and are up to the individual application developers.

C++ Interface

Protocol classes

Use protocol classes to define public interfaces.
The characteristics of a protocol class follow:

. It neither contains nor inherits from classes that contain member data, non-virtual functions, or private (or
protected) members of any kind.

. It has a non-inline virtual destructor defined with an empty implementation.

. All member functions other than the destructor, including inherited functions, are declared pure virtual and
left undefined.

Example

/| Abstract base class or protocol class specifies an interface
/1 for derived classes
/1 no data nenbers
/1 no constructors
/1 a virtual destructor
/'l set of pure virtual functions
#i f ndef _weather_h_
#define _weather_h_cl ass
weat her {
public: weather() { };
virtual ~weather() { };
virtual const char* getlLocation() const = 0;
virtual const char* getWnd() const = O;
virtual const char* getVisibility() const = O;
virtual const char* get Tenperature() const = O;
virtual const char* getPressure() const = 0;
}; // End weat her
#endi f

Implementation of the interface

Interface implementation
There are different ways to implement the interface.

airPortWeather.h

#i fndef _airPortWather_h_

#define _airPortWather_h_cl ass

ai rPort Weat her : public weather {
public: airPortWather () { } ;
~airPortWather() { } ;
const char* getLocation() const ;
const char* getWnd() const ;
const char* getVisibility() const ;

Page 16

Part 5: Developer Guidance

const char* get Tenperature() const ;
const char* getPressure() const ;
};//end airPortWat her
#endi f

airPortWeather.cpp

#i ncl ude "stdaf x. h"

#i ncl ude

#i ncl ude

#i fndef _weather_h_
#i ncl ude "weat her. h"

#endi f

#i fndef _airPortWather_h_
#i ncl ude "airPortWat her. h"

#endi f

const char* airPortWather::getlLocation() const {
/1 business |ogic goes here .
return strlLocation;

} // End getLocation

const char* airPortWather::getWnd() const {
/I busi ness | ogi c goes here .
return strWnd,

} // End get Wnd

const char* airPortWather::getVisibility() const {
/1 business |ogic goes here .
return strVisibility;

} // End getVisibility

const char* airPort\Wather::get Tenperature() const {
/'l business |ogic goes here .
return strTenperature;

} /1 End get Tenperature

const char* airPortWather::getPressure() const {
/1 business |ogic goes here .
return strPressure;

} // End getPressure

Plug-in
weatherReport.h

#i f ndef _weat her Report_h_
#defi ne _weat her Report_h_cl ass weat her;
cl ass weat her Report {
private: weather *myW«_; public: weatherReport () { } ;
virtual ~weatherReport();
voi d addWeat her Provi der (weat her *| cl WkProvi der) ;
const char* getlLocation() const ;
const char* getWnd() const ;
const char* getVisibility() const ;
const char* get Tenperature() const ;
const char* getPressure() const ;
}; //end weat her Report
#endi f weat her Report . cpp
#i fndef _weather_h_
#i ncl ude "weat her. h"
#endi f
#i fndef _airPortWather_h_
#i ncl ude "air Port Wat her. h"
#endi f
#i f ndef _weat her Report_h_
#i ncl ude "weat her Report. h"
#endi f
weat her Report:: ~weat herReport() { } ; // End destructor
voi d weat her Report:: addWeat her Provi der (weather *Icl WProvider) {
nmyW«_ = | cl WPr ovi der;
}; // End addWeat her Provi der
const char* weat her Report::getLocation() const {
return (myW_->get Location());
}; // End getlLocation

Page 17

Part 5: Developer Guidance

const char* weat her Report::getWnd() const {
return (nmyW_->getWnd());

}; // End get Wnd

const char* weatherReport::getVisibility() const {
return (myW_->getVisibility());

}; // End getVisibility

const char* weat her Report::get Temperature() const {
return (nmyW_->get Tenperature());

}; /1 End get Tenperature

const char* weat her Report::getPressure() const {
return (myW_->get Pressure());

}; // End getPressure

Costs and Benefits

The benefits of using protocol classes include the following:

. Insulating applications from the external client
. Insulating changes that are internal to the interface
. Insulating changes to the public interface from changes to the implementation of the interface

Insulation has costs, but these tend to be outweighed by the gains in interoperability and reusability. Some of the
costs include the following:

. Going through the implementation pointer
. Addition of one level of indirection per access

. Addition of the size of the implementation pointer per object to memory requirements

Page 18

Part 5: Developer Guidance
Part 5: Developer Guidance > Technical Guidance and Tactics > Implement a Component-Based Architecture

P1034: Implement a Component-Based Architecture

The Federation of Government Information Processing Councils/Industry Advisory Council (FGIPC/IAC) defined
component-based architecture (CBA) as follows in a March 2003 paper titled Succeeding with "Component-Based
Architecture in e-Government":

"An architecture process that enables the design of enterprise solutions using pre-manufactured components. The focus
of the architecture may be a specific project or the entire enterprise. This architecture provides a plan of what needs to be
built and an overview of what has been built already." [Succeeding with Component-Based Architecture]

CBA represents a shift from the traditional, custom-development-oriented,"design, code, and test" approach that has been
used throughout the DoD in the past to a more business-oriented "architect, acquire, and assemble" approach.

The custom-development approach has been successful in building many systems. However, the integration, evolution,
reuse and cost of these systems have presented a problem. Consequently, these custom-developed systems have been
labeled as archaic stovepipes that can not plug-and-play with other systems.

CBA promises benefits such as shorter time to market, lower risk, and modular and adaptive systems.

The core of CBA is components. The NESI definition of the term component is that it is one of the parts that make up

a system; a component may be hardware or software and may be subdivided into other components. The following
guidance statements capture the essence of components.

Guidance
e (G1011: Make components independently deployable.
* (G1012: Use a set of services to expose Component functionality.

e (G1217: Develop and use externally configurable components.

Page 19

http://www.enterprise-architecture.info/Images/Documents/030403_Succeeding_with_Component-Based_Architecture_in_e_Government.pdf

Part 5: Developer Guidance

Part 5: Developer Guidance > Technical Guidance and Tactics > Automate the Software Build Process

P1007: Automate the Software Build Process

A software build process interfaces with source control, compiles code, creates executables, runs unit tests, packages
and deploys, and generates documentation. An automated software build process is a hecessary part of every software

development project and ensures the software will be built in the same manner each time.

Guidance

« Gl190:

« (Gl218:

« Gl219:

« Gl220:

e (G1221.

o« Gl222:

« Gl223:

e (G1224.

« (G1225:

Use a build tool.

Use a build tool that supports operation in an automated mode.

Use a build tool that checks out files from configuration control.

Use a build tool that compiles source code and dependencies that have been modified.

Use a build tool that creates libraries or archives after all required compilations are completed.
Use a build tool that creates executables.

Use a build tool that is capable of running unit tests.

Use a build tool that cleans out intermediate files that can be regenerated.

Use a build tool that is independent of the Integrated Development Environment.

Best Practices

« BP1075: All application developers should use the Apache Ant build tool to build, package, and deploy Java EE

applications.

Page 20

Part 5: Developer Guidance
Part 5: Developer Guidance > Presentation Tier

P1058: Presentation Tier

The presentation tier represents all the components used to generate an interactive display that enables users to
communicate with applications. The components of a presentation tier are not necessarily in the same physical location.
The presentation tier communicates with the middle tier to make requests and retrieve data from the data tier. The
presentation tier then shows the end user the data retrieved from the middle tier. Components located in the middle tier
that build Web pages for display are considered part of the presentation tier.

Tier Architecture
Preseniation '_ : m—-r #-":i
Tier .u,"uuh == |

e
Midde E'ﬁ ('fj)i“"“) ;(m) o
= OO Fp

Dats Interlatraset | | Oporating Datshasts
Tier {ﬁ'.ﬂ-“ﬂ ’ [P i ==
ol 3
11010

Detailed Perspectives
Human-Computer Interaction
. Human Factor Considerations for Web-Based User Interfaces
. Designing User Interfaces for Accessibility
. Desinging User Interfaces for Internationalization
Browser-Based Clients
. XML Rendering
. Active Server Pages (ASP)
. Active Server Pages for .NET (ASP.NET)
. Java Server Pages (JSP)
. Style Sheets
. Web Portals

Thick Clients

Page 21

Part 5: Developer Guidance
Guidance

e (G1032: Validate all input fields.

Page 22

Part 5: Developer Guidance
Part 5: Developer Guidance > Presentation Tier > Human-Computer Interaction

P1032: Human-Computer Interaction

Human-Computer Interaction (HCI) is the study, planning, and design of the interaction between humans and computers.
HCIl is a subset of Human Systems Integration (HSI). Human Systems Integration is a requirement for Department

of Defense (DoD) acquisition as spelled out on Section 3.7 and Enclosure 7 of DoD Instruction 5000.2. In particular,

this instruction requires that Program Managers shall take steps to include human factors engineering during system
engineering over the lifecycle of the program to provide effective human-machine interfaces, "Where practical and cost
effective, system designs shall minimize or eliminate system characteristics that require excessive cognitive, physical or
sensory shills; entail extensive training or workload-intensive tasks; result in mission-critical errors; or produce safety or
health hazards."

Interoperability includes both the technical exchange of information and the end-to-end operational effectiveness of that
exchanged information as required for mission accomplishment. Whenever a user is required to interact with a computer
user interface to accomplish a mission, and that interaction fails due to poor design (i.e., information is misunderstood or
interaction results in a high cognitive load) then the risk of not accomplishing the mission is increased.

This perspective provides guidance and best practices that benefit human computer interaction to increase total system
performance, reduce maintenance costs through better design, and accommodate the cognitive characteristics of the
user. This perspective provides guidance for human factors common to all applications including data entry, data display,
and user control appearance and behavior. The following detailed perspectives provide additional human factor guidance
on more specific topics.
Detailed Perspectives
. Human Factor Considerations for Web-Based User Interfaces

. Designing User Interfaces for Accessibility

. Designing User Interfaces For Internationalization

Guidance

e (G1760: Solicit feedback from users on user interface usability problems.

G1761: Provide units of measurements when displaying data.

* (G1762: Indicate all simulated data as simulated.

« G1763: Indicate the security classification for all classified data.

e (G1032: Validate all input fields.

e (G1268: Label all data entry fields.

e G1270: Include scroll bars for text entry areas if the data buffer is greater than the viewable area.
e (G1285: Use relative font sizes.

* (G1286: Provide text labels for all buttons.

e (G1287: Provide feedback when a transaction will require the user to wait.

Best Practices

« BP1280: In tabular data displays, right justify integer data.

Page 23

Part 5: Developer Guidance
BP1281: In tabular data displays, justify numeric data with decimals by using the decimal point.

BP1767: Follow a standard process for human systems integration engineering such as the one defined by the
International Organization for Standardization in 1ISO 13407:1999 on human-centered design processes for
interactive systems.

BP1272: Disable dependent child controls when the parentcontrol is inactive.

BP1273: Gray out the push button label if a button is unavailable.

BP1290: Use a tool tip to display help information about a control when the purpose of the control is not self-
evident.

BP1291: Use obvious navigation controls for moving between pages in search results that span multiple pages.

BP1298: Provide basic search functionality as the default with a link or button that provides more advanced search
features.

BP1054: Use standard controls that provide input choices for the user.

Page 24

Part 5: Developer Guidance

Part 5: Developer Guidance > Presentation Tier > Human-Computer Interaction > Designing User Interfaces for
Internationalization

P1112: Designing User Interfaces for Internationalization

Internationalization is the process of generalizing software so that it is interoperable with multiple languages (i.e.,

locales) and cultural conventions without the need for re-design or re-compilation. If an application designed for a U.S.
audience will be used in combined or coalition warfare operations, it needs to provide a user interface that matches users
expectations, interacts with users in their native language, and displays data in a manner that is consistent with users'
cultural conventions. The purpose of this perspective is to provide a starting reference for developers needing to support
internationalization and provides best practices and resources.

Best Practices

« BP1764: Make all localizable user interface elements such as text and graphics externally configurable.
« BP1765: Declare the encoding type for all user interface content.

« BP1766: Develop user interfaces to accommodate variable syntactic structure for messages.

Page 25

Part 5: Developer Guidance

Part 5: Developer Guidance > Presentation Tier > Human-Computer Interaction > Designing User Interfaces for
Accessibility

P1111: Designing User Interfaces for Accessibility

Section 508 of the Rehabilitation Act of 1973, as amended, requires that individuals with disabilities have access to
and use of information that is comparable to that provided to federal employees and members of the public who are
not disabled. The standards created under Section 508 define technology accessibility requirements for all types of
information technology in the federal sector, including Web-based intranet and Internet information and applications.

Federal accessibility standards focus on providing redundancy in information presentation and interaction so individuals
with disabilities can use different modalities to access information. The scope of Section 508 is confined to the federal
sector, with a limited exemption for systems used for military command, weaponry, intelligence, and cryptologic activities.
The exemption does not apply to routine business and administrative systems used for other defense-related purposes
or by defense agencies or personnel. A Web application or portal that will be used in these systems is required to comply
with Section 508 standards.

Guidance

e (G1044: Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973
(as amended) when developing software user interfaces.

Page 26

Part 5: Developer Guidance

Part 5: Developer Guidance > Presentation Tier > Human-Computer Interaction > Human Factor Considerations for Web-
Based User Interfaces

P1108: Human Factor Considerations for Web-Based User
Interfaces

Web based user interfaces include Web sites, Web applications, and Web portals. This perspective provides guidance
and best practices relating to human factors consideration that are specific to Web-based user interfaces. Additional
information concerning general user interface guidance is available in the Human Computer Interaction perspective.

Web sites tend to be content-centric and are generally developed using HTML for marking up content for Web pages.
Sometimes other technologies such as JavaScript are used to add interactivity to Web pages. If developers choose to
use a mix of HTML and other technologies to deliver Web content, it is important that they design their Web pages so the
pages work correctly when viewed with browsers that support these technologies as well as with browsers that do not. In
this way, all users will have an acceptable experience using the Web site.

Web sites vary in their layout, but there are common themes for layouts that are widely used and understood users. Some
example Web site layouts are shown in this figure:

Selector Area
Selector Detail
Area Area
Detail Area
Overview Selector
Area Area
Overview]
Selector| Detail Area .
Detail
Area Area Area
[1178

Web Applications

A Web site tends to be content-centric, but a Web application tends to be task-centric and organizes content
around a hierarchy of tasks. An example user interface for a given task structure is shown in this figure:

Task Structure Application Structure
Task A][Task B][Task C]
Tasks |Subtask 1 | Subitask 2 |
Subtasks
[1174

A Web application often supports interactivity similar to that available in a desktop application but delivered to
users within the framework of a browser. Because a Web application allows users to create, save, and delete data,
it supports greater complexity in design and interactivity compared to a content-oriented site.

Page 27

Part 5: Developer Guidance

In addition to application structure, there are common navigation models that are well understood by users for Web
application workflow. Some common examples are in this figure:

Hub Wizard

Step 1 |=—+|Step 2 |=—+| ... [=—*StepN

Pyramid
ol o e+t
Parent

s ")
VAR

Child || child [7=—=| child

1180

The "hub navigation metaphor" is often used for applications where a task consists of multiple independent steps
that are performed in any order. The hub page present users with a collection of "spoke" pages that they access
from a single page; when users submit their input, they are returned to the hub page.

The "wizard navigation" metaphor is often used when a task consists of multiple interdependent steps that are
performed in a predefined order. In this metaphor, a wizard presents users with a collection of pages that they
interact with sequentially; when the user submits their input, the user is presented with the next page

The "pyramid navigation" metaphor is often used when it is important to navigate to sibling, child, or parent pages
while completing tasks; when the user submit their input, they are returned to the same page where they follow
links to another adjacent page in the pyramid.

Web Portals

A portal is a type of Web application that provides a gateway from which users can access the information,
resources, and services they need. A portal aggregates and organizes content from different sources within a Web
page related to specific mission or business task. Sometimes a portal allows users to personalize what and how
information is presented to them such as selecting and arranging the content presented on the portal page and to
choosing the "look and feel" of the display.

The pages in a portal contain portlets that enable users to view and/or interact with Web-based information
related to a specific function. A portlet provides more than a view of existing Web content, functioning instead as a
complete application with multiple states and view modes.

Since portals are designed to contain portlets from various sources, it is important for portlet developers to develop
portlets carefully to allow for a standard presentation and behavior when the portlet is deployed within the portal.
Allowing for configuration for presentation such as fonts and colors allows for a common look and feel across all
portlets within a portal. Developing portlets according to standards for user controls enables a better experience for
the end user with respect to common portlet control behavior.

Guidance

G1267: Use industry standard HTML data entry fields on Web pages.
G1276: Do not modify the contents of the Web browser's status bar.

G1277: Do not use tickers on a Web site.

Page 28

Part 5: Developer Guidance
e (G1278: Use the browser default setting for links.

e (G1284: Use only one font for HTML body text.

 (G1292: Use text-based Web site navigation.

e (G1293: Use descriptive labels for all clickable graphics.

e G1294: Provide a site map on all Web sites.

e G1295: Provide redundant text links for images within an HTML page.

e (G1566: Use al t attributes to provide alternate text for non-text items such as images.

e (G1759: Use a style guide when developing Web portlets.

Best Practices

e BP1297: Structure a Web site hierarchy so users can reach important information and/or frequently accessed
functions in a maximum of three jumps.

« BP1299: Include a link back to the home page on all Web pages.

« BP1042: Do not build a Web page where the horizontal width is greater than the screen (vertical scrolling is fine),
planning for the lowest common denominator to be super-VGA resolution (800 x 600).

e BP1041: Do not change the default colors of the links.

« BP1038: Use a sans serif font (e.g., Arial, Verdana) in Web pages rather than a serif font (e.g., Times New
Roman).

« BP1039: Do not underline any text unless it is a link.

« BP1768: Use design patterns for application navigation.

Page 29

Part 5: Developer Guidance
Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients

P1008: Browser-Based Clients

This complex perspective provides guidance for creating and interfacing to thin clients. It includes the following topics:
. XML Rendering
. Active Server Pages (ASP)
. Active Server Pages for .NET (ASP.NET)
. Java Server Pages (JSP)
. Style Sheets
Guidance
e (G1035: Follow W3C standards for code which will generate a Web page display.
e (G1043: Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.
e G1271: Provide instructions and HTML examples for all style sheets.
e (G1283: Use linked style sheets rather than embedded styles.
Best Practices
« BP1040: Use hex codes for all colors (e.g., #FFFF33), never the color name (e.g., yellow).
« BP1291: Use obvious navigation controls for moving between pages in search results that span multiple pages.
« BP1567: Use the <abbr > and <acr onyn® tags to specify the expansion of acronyms and abbreviations.

« BP1568: Use a markup language to represent mathematical equations within Web pages.

Page 30

http://www.w3.org/

Part 5: Developer Guidance
Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > XML Rendering

P1084: XML Rendering

XML can render display-device-neutral output to a particular output device given a set of display rules or a style sheet.
The XSLT file is the decoupled output formatter that determines how the output device renders the data.

Guidance

e (G1045: Define XML format information separately in XSL.

Page 31

Part 5: Developer Guidance
Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > Active Server Pages (ASP)

P1001: Active Server Pages (ASP)

Active Server Pages (ASP) are scripts that are executed by Microsoft Internet Information Services (1IS). The output is
returned to the end user as HTML. Typically, an ASP script generates a customized Web page on the fly before sending
it to the end user.
. Active Server Pages:

. Are specific to Microsoft

. Only run on Internet Information Services (1I1S) or Personal Web Server (PWS).

. Can contain HTML, Jscript, and VBScript

. Can access Component Object Model (COM) component

g —
< e
s ‘/////
<html=<head=..

i ASP

11027

Guidance

e (G1050: In ASP, isolate the presentation tier from the middle tier using COM

Page 32

Part 5: Developer Guidance
Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > Active Server Pages for .NET (ASP.NET)

P1002: Active Server Pages for .NET (ASP.NET)

Microsoft .NET uses ASP.NET for Web applications. ASP.NET requires Microsoft Internet Information Services (lIS).

|y .| .. B
ﬁil'lni{ App Framework

1022

ASP.NET improves upon ASP. It has more features than Java Server Page (JSP), an extensible Web technology that
uses static data, JSP elements, and server-side Java objects to generate dynamic content for a client. Typically, the static
data are HTML or XML elements, and in many cases the client is a Web browser. An application responds to events, such
as code-behind and event-driven Web controls.

Guidance

¢ (G1052: Use the code-behind feature in ASP.NET to separate presentation code from the business logic.
e G1053: Do not embed HTML code in any code-behind code used by aspx pages.
e (G1056: Specify a versioning policy for .NET assemblies.

¢ (G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

Page 33

Part 5: Developer Guidance

Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > Java Server Pages (JSP)

P1040: Java Server Pages (JSP)

Java Server Page (JSP) technology enables Web developers and designers to develop and maintain information-rich,
dynamic Web pages that leverage existing business systems rapidly and easily. As part of the Java technology family,
JSP technology enables rapid development of platform-independent, Web-based applications. JSP technology separates
the user interface from content generation, enabling designers to change the overall page layout without altering the
underlying dynamic content.

Java Server Pages:

Are similar to ASPs.

Can contain HTML, Java code, and JavaBean components
Provide a powerful, dynamic Web page assembly mechanism
Are platform-independent

Are compiled into Servlets at runtime; on most application servers, this occurs only the first time they are invoked

Guidance

G1060: Encapsulate Java code that is used in JSP(s) in tag libraries.

G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

Page 34

Part 5: Developer Guidance
Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > Style Sheets

P1070: Style Sheets

A style sheet is a template used to customize the layout of a Web site. Style sheets allow Web sites to present content in
a consistent manner. Web designers can create custom tags to override default values:

h1, h2, h3 {
font-famly: verdana, arial, 'sans serif';
}
p,table, li {
font-famly: verdana, arial, 'sans serif';
margin-left: 10pt;
}
Guidance

e (G1043: Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.
e« (G1283: Use linked style sheets rather than embedded styles.

e G1271: Provide instructions and HTML examples for all style sheets.
Best Practices
« BP1040: Use hex codes for all colors (e.g., #FFFF33), never the color name (e.g., yellow).

« BP1041: Do not change the default colors of the links.

< BP1038: Use a sans serif font (e.g., Arial, Verdana) in Web pages rather than a serif font (e.g., Times New
Roman).

Page 35

Part 5: Developer Guidance
Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > Web Portals

P1077: Web Portals

A Web portal is a Web site that provides a starting point or gateway to other resources on the Internet or an intranet.
Access to a Web portal is typically via HTTP and can be in any number of formats including HTML, Wireless Markup
Language (WML) or VoiceXML. A Web Portal often uses a Web Application that provides single sign-on, content
integration and aggregation from different sources, collaboration, content and document management and
personalization of the presentation. It hosts the presentation layer of different backend systems in a single touch point.

An attractive feature of a portal to an enterprise is to aggregate different applications into a single page with a common
Look and Feel that enhances the portal end user's experience. A portal may also have sophisticated personalization
features, which provide customized content to individual end users or to their roles within the enterprise. Portal pages
can dynamically coordinate different portlets to create specialized content for different portal end users.

IBM's Websphere depicts the basic architecture of portals as a series of layers between the end user's environment such
as browsers, mobile devices and phones. The portal processes an end user client request. A Web Application that
interacts with the portlet to request the web page for the current end user is produced. The portal Web Application then
uses the portlet container for each portlet to retrieve the requested content through the Web Container Invoker API.
The portlet container calls the portlets through the Portlet API. The Container Provider Service Provider Interface (SPI)
enables the Web Application to retrieve information from the portal through its portlet container.

The portlet container invokes the portlets, provides a runtime environment, and manages the lifecycle of the portlet. In

addition, it provides persistence for the portlet to store end user information enabling the production of customized Web
pages.

(o]
[=]
=1
[+1]
=
Q
=)
3
F 3
= = g
T|| Portlet! ||5
= =
F|[fonalieb) — | serviet || Z
= pplication | [1 | container =
I o
-, =
= g
g
(=1
@
=
T
11006
Guidance

e (G1245: Isolate the Web service portlet from platform dependencies using the Web Services for Remote
Portlets (WSRP) Specification protocol.

Best Practices

« BP1246: Base Java-based portlets on JSR 168.

e BP1247: Encapsulate Java-based portlets in a .war file.

Page 36

http://www-106.ibm.com/developerworks/websphere/library/techarticles/0312_hepper/hepper.html

Part 5: Developer Guidance
Part 5: Developer Guidance > Presentation Tier > Thick Clients

P1074: Thick Clients

A thick client (often called "fat client") is a client machine in a client/server environment that performs most or all of the
application processing with little or none performed in the server.

Guidance

e G1030: Use a standard GUI component library.

Page 37

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier

P1052: Middle Tier

The middle tier provides process management services such as process development, monitoring, and resourcing that
are shared by multiple applications.

Tier Architecture
Tier Iﬂﬁ;h =1

Thick (et Browger hased

= e T
)¢
iﬂﬁ' e }uux

Wk Pa
GIS - Webh COP

Datsbases

Middle
Tier

oW

Tier & [@

1040

Detailed Perspectives
Messaging
. Message-Oriented Middleware (MOM)
. Message-Based Applications
. Messaging with MSMQ
Web Services
. Web Services with.NET
. SOAP
. Web ServicesCompliance
. WSDL
. Insulation and Structure
. Error Handling
. Universal Description, Discovery, and Integration (UDDI)
Java EE Environment

NET Framework
CORBA

Page 38

Part 5: Developer Guidance

Software Communication Architecture
DDS

Page 39

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Messaging

P1047: Messaging

The explosion of the Internet required applications to communicate and interoperate with other applications and services.
Messaging systems play an important role in enterprise applications because computers and networks are inherently
unreliable and messaging systems are perfectly suited to operate in disconnected environments. They provide a reliable,
secure, event-driven message-delivery communication mechanism. Unlike traditional RPC-based systems (RMI or
CORBA), most message-oriented based systems operate peer-to-peer.

The messaging paradigm offers three major advantages:

. Allows applications to communicate asynchronously. This means the system sending the message does not have to
wait around for a response.

. Provides more robustness and reliability; messages do not get lost if a client has crashed or is unavailable.
. Multiplexes messages and sends them to multiple clients.

There are other advantages such as transactional message support, message prioritization, load balancing, and firewall
tunneling. However, these features usually depend on how the Message-Oriented Middleware (MOM) is implemented.

This diagram shows the relationship of the classes and interfaces in the Java Message Service (JMS) API. Developers
use these classes and interfaces to create a JMS application.

Jﬁ- raa)
Conneciion

Creates
- ; ‘.\ —

[Messior >
"r’&r- 'Eb&n’ . — '
““ﬁi’ﬂmn: SR (v, elmie / i
Hevesedy \, ‘ Lo -]\;iﬂr
RS I Taldl

Page 40

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Messaging > Message-Oriented Middleware (MOM)

P1046: Message-Oriented Middleware (MOM)

Message-oriented middleware acts as an arbitrator between incoming and outgoing messages to insulate producers
and consumers from other producers and consumers A MOM typically is implemented using proprietary protocols and
interfaces, which means that different implementations are usually incompatible. Using a single implementation of a MOM
in a system typically leads to dependence on the MOM vendor for maintenance, support, and future enhancements.
Maturing standards such as Java Message Service (JMS) and SOAP Web services are reducing vendor dependencies
by standardizing message content and providing standard interfaces to the various MOM APIs.

Advantages

. A MOM provides a common reliable way for programs to create, send, receive, and read messages in any
distributed enterprise system.

. A MOM ensures fast, reliable, asynchronous communications, guaranteed message delivery, receipt
notification, and transaction control.

. A MOM increases the interoperability, portability, and flexibility of an application by allowing it to be
distributed over multiple heterogeneous platforms.

. A MOM enables applications to exchange messages with remote programs without having to know on what
platform or processor the other application resides.

Disadvantages

. A MOM does not help with interoperability directly, as applications need to agree on message content and
format at development time.

. The current marketplace is filled with proprietary implementations of features, so moving between MOMs
usually requires recoding; JMS and other standard interfaces help in this area but do not usually cover all of
the vendor's extended functionality.

Features

Guaranteed message delivery MOMs provide a message queue between
interoperating processes. If the destination
process is busy or offline, the message is held
in a temporary storage location until it can be
processed.

Asynchronous and synchronous MOMs allow multitasking. Once an application

communications sends out a message to a receiving application,
the MOM allows the client application to handle
other tasks without waiting for a response from
the receiving application. Supports blocking
method calls.

Transaction support Most MOMs support transactions.

One-time, in-order delivery MOMs guarantee that each message will be
delivered once and that messages are received
in the order in which they are sent.

Message routing services MOMs support least-cost routing and can
reroute around network problems.

Notification Services MOMs provide audit trails, journaling, and
notifications when messages are received.

Page 41

Part 5: Developer Guidance
Message models

The most important aspect of a message-based communication system is the message. The most common
messaging models are the following:

. Point-to-Point (p2p)
. Publish/Subscribe (pub/sub)

. Request-Reply

Page 42

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Messaging > Message-Based Applications

P1045: Message-Based Applications

Developers need to understand the types of applications that are best suited for message-based systems so they can
understand how best to use messaging to enterprise applications. Three types of applications follow:

. Workflow
. Event-driven

. Disconnected

Best Practices

« BP1116: If using Java-based messaging (e.g., JMS), register destinations in Java Naming and Directory
Interface (JNDI) so message clients can use JNDI to look up these destinations.

Examples

Most JMS interoperability coding issues relate to the use of JNDI for resources. You can mitigate these issues by
encapsulating resource definitions in a properties file or in Java EE as a deployment descriptor. The following table
lists the vendor-specific syntax for specifying resources.

Vendor JNDI properties
WebLogic 8.1 sp2 java.naming.factory.initial=WebLogic .jndi.WLInitialContextFacton

java.naming.provider.url=t3://localhost: 7001
JBoss 3.2.3 java.naming.factory.initial=org.jnp.interfaces.NamingContextFactc

java.naming.provider.url=jnp://localhost:1099
WebSphere 5.1 java.naming.factory.initial=com.ibm.websphere.naming.Wsnlnitial

java.naming.provider.url=iiop://localhost:2809
Sonic 5.0.2 java.naming.factory.initial=com.sonicsw.jndi.mfcontext. MFContex

java.naming.provider.url=tcp://localhost:2506

com.sonicsw.jndi.mfcontext.domain=testdomain
Fiorano 7.2 java.naming.factory.initial=fiorano.jms.runtime.naming.Fioranolnit

java.naming.provider.url=http://localhost:1856
java.naming.security.principal=anonymous

java.naming.security.credentials=anonymous
Joram 4.0 java.naming.factory.initial=fr.dyade.aaa.jndi2.client.NamingConte:

java.naming.provider.url=joram://localhost:16400

Using JMS

Page 43

Part 5: Developer Guidance
Creating a JMS sender and receiver application

The previous sections have reviewed basic JMS terminology and interfaces. We are ready to put it all together
and see how to create a JMS sender and receiver application.

Process for creating a JMS Sender

To write a basic JMS sender application:
1. Perform a lookup through Java Naming and Directory Interface (JNDI) to get a connection factory.

2. Perform a lookup through Java Naming and Directory Interface (JNDI) to find a destination (Queue or
Topic).

3. Using the connection factory obtained in step 1, create a connection to the JMS provider.
4. Create a session by using the connection created in step 3.

5. Create a message producer (or) using the session created in step 4 and the destination created in
step 2.

6. Create and send the message with the message producer created in step 5. For a queue, use the
send method. For a topic, use the publish method.

Process for creating a JMS Receiver
To write a basic JMS receiver application:
1. Perform a lookup through Java Naming and Directory Interface (JNDI) to get a connection factory.
2. Perform a lookup through Java Naming and Directory Interface (JNDI) to find a destination (Queue or Topic).
3. Using the connection factory you obtained in step 1, create a connection to the JMS provider.
4. Create a session by using the connection created in step 3.
5. Create a message consumer (or) using the session created in step 4 and the destination created in step 2.

6. For asynchronous operations, create a custom message listener. Attach it (set) to the desired message
consumer (Queue or Topic). For synchronous operations, use the receive method of the Receiver.

7. When a message is available, the method of the message listener will be called for asynchronous operations.
For synchronous operations, the blocking receive method will return a Message object.

JMS client

AbstractThread.java

package util;

public abstract class Abstract Thread extends Thread {
private bool ean killed = fal se;
private bool ean paused = fal se;

| **

* Creates a new thread by calling correspondi ng
* constructor in java.lang. Thread.
*/
public Abstract Thread() {
super () ;
} // End Abstract Thr ead

| **

Page 44

Part 5: Developer Guidance

* Creates a new thread by calling correspondi ng
* constructor in java.lang. Thread.
*/
public AbstractThread (String name) {
super (nane);
} /1 End Abstract Thread
/**
* Creates a new thread by calling correspondi ng
* constructor in java.lang. Thread.
*/
public Abstract Thread (ThreadG oup group, String name) {
super (group, hane);
} /1 End Abstract Thread
/**
* Repl acenent for the deprecated met hod stop().
* Sets the killed property to true and notifies
* all waiting threads.
*/
synchroni zed public void kill() {
killed = true;
noti fyAll();
} /1 End kill
/**
* Repl acenent for the deprecated nethod suspend().
* Sets the paused property to true.
*/ synchroni zed
public void pause() {
paused = true;
} /1 End pause
/**
* Repl acenent for the deprecated method resune().
* Sets the paused property to false and notifies
* all waiting threads.
*/
synchroni zed public void unpause() {
paused = fal se;
noti fyAll();
} /1 End unpause
/**
* This thread's wait nmethod. Called to force the
* thread to wait to be notified. It is meant to be
used in the wait/notify scheme for the current
t hr ead.

nothing to do and when notified, can wake up,

*
*
*
* For exanple, this thread can wait when it has
*
* process sonething, and then wait again.

*

/
synchroni zed public void waitToBeNotified() {
try {
wai t () ;
} catch(lnterruptedException ie) {
}
} /1 End waitToBeNotified
/**
* Determines if the thread has been kill ed.
*/

public boolean isKilled() {
return kill ed;
} // End isKilled
/**
* Determ nes whether the thread is currently paused.
*/
publ i c bool ean isPaused() {
return paused;
} // End isPaused
} /1 End Abstract Thread

JmsConsumer.java

package client;
import util.Abstract Thread;
i mport javax.naming.|nitial Context;

Page 45

Part 5: Developer Guidance

i mport javax.j
import javax.j
i mport javax.j

| Connecti onFact ory;
|
|
i mport javax.j
|
|
|

ns.
ms. MessageConsuner ;
ms. Messageli st ener;
Text Message,;
i mport javax Desti nati on;

i mport javax Connecti on;

i mport javax Sessi on;

import java.util.LinkedList;

| **

ns.
ns.
ns.
ns.

* Standal one java jms consuner that receives
* text messages froma test queue or a test
* topic. This is just a sanple consuner so it
* uses default settings where possible and
* does not account for advanced jns functionality.
*/
public class JnmsConsumner
ext ends Abstract Thread
i mpl enents MessagelLi stener {
private LinkedLi st inbox;
private MessageConsumer CONSUNEr;
private Connecti on connecti on;
private Text Message nsg;
/**
* constructor - sets up jms connections.
* All JNDI properties are configured using
* the jndi.properties file. This file needs
* to reside in the topnost directory of the
* classpath because it has no package associ at ed
*withit.1
* @aram connectionFactory the JNDI nane of
* the jms connection factory
* @aram destinati onNane the JNDI nane of the
* jnms topic or queue
*/
public JmsConsumer (String connectionFactory, String destinati onName)
throws Exception {

/] create thread safe list to hold jnms nessages

i nbox = new Li nkedLi st ();

/'l The javax.nam ng.* package contai ns a mechani sm

/'l that automatically puts jndi paranmeters into the

/1 initial context froma properties file.

/1l The properties file should be nanmed jndi.properties

/1 and placed in the top |level directory of the classpath.
/'l see javax.nam ng. Context for further discussion

Initial Context ictx = new Initial Context();

/1 jms destination (topic or queue)

System out. println(JmsConsumer - |ooking up jns destination: + destinationNane);

Destinati on destination = (Destination) ictx.|lookup (destinati onNanme);

/'l jms factory

Systemout.println (JmsConsuner - |ooking up jms connection factory: + connectionFactory);
ConnectionFactory factory = (ConnectionFactory) ictx.lookup (connectionFactory);

/1 jms connection
connection = factory. createConnection();

/1 jms session
/| parans = transactional, acknow edgenent of
/'l message received
Sessi on session =
connection. creat eSession (fal se, Session. AUTO ACKNOANLEDGE) ;
/'l jms consuner for given destination
consunmer = session. creat eConsuner (destination);
consuner . set Messageli st ener (t hi s);
/] create reusable text message
nmsg = session. creat eText Message();
/'l done with context ictx.close();
/] start connection - this only needs to be done
/1 for consuners, not producers
Systemout.println (JmsConsuner - starting jms connection);
connection.start();
} /1 End JnmsConsuner
/**

* run

Page 46

Part 5: Developer Guidance

*/
public void run() {
bool ean startFlag = true;
while (lisKilled()) {
/Il only here to print initial message
if (startFlag) {
System out . println("JmsConsunmer - done");
Wstem OUt.pI'intln("******************************\n");
startFlag = fal se;
} // End if
/'l check internal message queue and then wait for notify()
/!l to be called fromthe jns cal |l back onMessage() nethod
it (isEmty()) {
wai t ToBeNot i fied();
if (isKilled())
br eak;
} // End if
try {
Text Message nmsg = (
Text Message) retri eveMessage() ;
System out. println("JmsConsunmer - got message (" + msg.getText() + ")");
} /1 End try
catch (Exception exception) {
Systemout.println ("JnsConsuner - error in run nethod");
Systemout.println (exception.toString());
} /1 End catch exception
} /1 End while | oop
} // End run
/**
* kil
*/
public void kill() {
Wstem OUth’Intln ("\n******************************")’
Systemout.println ("JnsConsuner - thread stopping");
super. kill();
try {
connection. cl ose();
} /1 End try
catch (Exception exception) {
/1 Do not hi ng
} /1 End catch Exception
Systemout.println ("JnsConsuner done");
Wstem OUth’Intln ("******************************\n")’
Y /1 End kill

| **

* finalize

*/

public void finalize() {
kill();

} /1 End finalize

/**

* Adds a new object to the internal queue
* @aram obj the object to be added to the queue.
*/
private synchroni zed void storeMessage (Cbj ect messagebject) {
i nbox. addLast (message(bject);
} /1 End storeMessage

/**

* Renmpbves an object fromthe internal queue

* @eturn the next object on the queue.

*
/

private synchroni zed Cbject retrieveMessage() {
return inbox.renmoveFirst();

} /1l End retrieveMessage

/**

* |Is internal queue enpty

*
/

private synchroni zed bool ean i sEmpty() {
return inbox.isEnmpty();

} /1 End isEnpty

/**

* From Messageli stener interface. This nethod
* is called by jns when a nmessage arrives on

Page 47

Part 5: Developer Guidance

* the jms destination that this is subscribed to.
* @aram nsg Message object fromjns
*/
public void onMessage (javax.jns. Message nsg) {
try {
st or eMessage(nsg) ;
/'l wake up and process
synchroni zed (this) {
notify();
} /1 End synchroni zed bl ock
} /1 End try
catch (Exception exception) {
Systemout.println ("JnsConsuner - error in onMessage nethod");
Systemout.println (exception.toString());
} /1 End catch Exception
} /1 End onMessage
/**
* main
*/
public static void main (String argv[]) {
%’Stemoutprlntln ("\n******************************")’
Systemout.println ("JnsConsuner starting");
JmsConsumner consumer = nul | ;
try {
consunmer = new JnsConsuner (argv[O0], argv[1]);
consuner.start();
} /1 End try
catch (Exception exception) {
Systemout.println ("JnsConsuner - error in main nethod");
Systemout.println (exception.toString());
consuner. kill();
} /1 End catch exception
} // End main

} /1 End JnmsConsuner

Page 48

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Messaging > Messaging with MSMQ

P1048: Messaging with MSMQ

Messaging in .NET uses Microsoft Message Queue (MSMQ). MSMQ is responsible for reliably delivering messages
between applications inside and outside the enterprise. MSMQ ensures reliable delivery by placing messages that fail to
reach their intended destination in a queue and then resending them once the destination is reachable.

T ==

Producer]
Application]
Consumern
4 e Application
[1067

MSMQ also supports transactions. It permits multiple operations on multiple queues, with all of the operations wrapped
in a single transaction, thus ensuring that either all or none of the operations will take effect. Microsoft Distributed
Transaction Coordinator (MSDTC) supports transactional access to MSMQ and other resources.

Best Practices

e BP1111: Mark all Microsoft Message Queue (MSMQ) messages as recoverable.

« BP1112: Specify all Microsoft Message Queue (MSMQ) queues as transactional if they support multiple-step
processes.

« BP1227: Do not allow installation of MSMQ-dependent clients.

e BP1230: Do not use the MSMQ Support Local Account sOr NT4 feature.

Page 49

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Web Services

P1078: Web Services

A Web service is an application that exists in a distributed environment, such as the Internet. A Web service accepts a
request, performs its function based on the request, and returns a response. The request and the response can be part of
the same operation, or they can occur separately in which case the consumer does not need to wait for a response. Both
the request and the response usually take the form of XML, use a portable data-interchange format called SOAP, and are
delivered over a wire protocol, such as HTTP.

A Web service can reside on top of existing legacy applications and expose services to the net. The Web services
architecture illustrated below implements the service-oriented architecture pattern. For more information on design
patterns, see "Web Service Patterns: Java Edition" by Paul B. Monday.

| Directory

s
s :3 Vahitts Fages
> P 4 :}" T allaww T'amzs ;

_// // e Pagrd

Locato Publieh

Celasial fnfo
Fizh Bemvice

B

>

1042

Web Service Models

Web services have traditionally been used to connect people to services. However, as the Web service
infrastructure has matured, a new model has emerged, the service-to-service model.

Traditional Model

In a classic Web service, a request is usually made to a Web service using a Web browser. The request
is submitted to the Web service using HTTP or HTTPS over the Internet or an intranet. The Web service
processes the request and returns an HTML page that can be displayed in a Web browser.

HITEHTTPS

1043

Page 50

Part 5: Developer Guidance
A classic Web service has the following characteristics:

. Web pages appear via a Web browser
. Connection is via TCP/IP
. Transport is HTTP/HTTPS

. Message format is HTML
Service-to-Service model

Application servers used to be responsible for providing machine-to-machine services. Now Web servers can
handle similar work. The Web server can pass a request as an XML payload embedded in a TCP/IP and HTTP
request, process the data, and respond. The response is typically in the form of an HTML Web page or an XML
payload that a client application can use.

HITPRHITPSY

I RN
T i A 15-.-.5. i
AT -@ -
Heb
ek Service
Service
HITPHFTPS
Response in
HTML
11044

Machine-to-machine Web services have the following characteristics:
. Two independent applications
. Two independent servers
. Connection is via TCP/IP
. Transport is HTTP (port 80)
. Message format is XML payload in SOAP format
Key characteristics
Some key characteristics of Web services include the following:
. High-overhead interactions; may be too heavy for some applications
. Loosely coupled collaborators (e.g., client/server)
. Multiple layers of parsing, marshalling, and un-marshalling
. Non-standard content

. Standard interaction protocol

Page 51

Part 5: Developer Guidance
. No support for services such as messaging and security

. Infant technology
. No support for pass-by-reference

Guidance

e (G1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.
e (1088: Use isolation design patterns to define system functionality that manipulates Web services.

e G1090: Do not hard-code a Web service's endpoint.
Examples

Navy operational example: Exposing Web services for METOC

The following figure shows a simplified example of the architecture, illustrating a METOC metcast application that
uses SOAP as a proxy to legacy content.

Extenias Bnterist
Flrewall Flreswall
MITCAST
— Prochars fa—
e % Rk byen
e i LT
L] — - -
L g g : METCAST
S 3
i It‘-| e
1 | Measreyi
1 i s -
F H
| i METCAST
Application et lip e | Web Server |——h_1|y—-|- BRAP B Retibrwes
| 1dawai | 1 LIPER}
— 1
| (" wmTCAsT
o i Sar
| ““" (PITES fan
AP Hage)
| i Mawai = | e e
; METCAST
G
ABERE L]
B gindry AP}
11045

Page 52

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Web Services > Web Services with .NET

P1079: Web Services with .NET

.NET Web services use ASP.NET to expose the middle tier's API via SOAP. .NET Web services also support the
WSDL 1.1 specification and use a WSDL document to describe it. In this case, however, the WSDL document contains
an XML namespace that uniquely identifies the Web service's endpoints. .NET provides the following:

. A client-side component that lets an application invoke web service operations described by a WSDL document.

. A server-side component that maps Web service operations to method calls as described by a WSDL and a Web
Services Meta Language (WSML) file, which is needed for Microsoft's implementation of SOAP.

Page 53

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Web Services > SOAP

P1068: SOAP

SOAP is an XML message-based protocol. It uses HTTP to send text commands to Web services across the internet.
SOAP is lighter weight and requires less programming than similar protocols such as CORBA and Distributed
Component Object Model (DCOM). The extensible messaging framework is independent of programming models and
other implementation-specific semantics.

The World Wide Web Consortium (W3C) provides this description of SOAP:

"SOAP Version 1.2 (SOAP) is a lightweight protocol intended for exchanging structured information in a decentralized,
distributed environment. It uses XML technologies to define an extensible messaging framework providing a message
construct that can be exchanged over a variety of underlying protocols. The framework has been designed to be
independent of any particular programming model and other implementation specific semantics."

Two major design goals for SOAP are simplicity and extensibility. SOAP attempts to meet these goals by omitting
distributed-system features from the messaging framework. Such features include but are not limited to reliability, security,
correlation, routing, and Message Exchange Patterns (MEPs). While it is anticipated that many features will be defined,
this specification provides specifics only for two MEPs. Other features are left to be defined as extensions by other
specifications.

Key characteristics

SOAP is RPC-based. It offers an XML-RPS with extensibility mechanisms; for instance, it allows schemas to
define types.

SOAP is an XML document.

SOAP is text-based, providing a standard mechanism for passing through firewalls via the HTTP ports.
There are many SOAP language bindings, and new ones are frequently announced.

SOAP is a wire protocol and does not have an activation mechanism. It is inherently stateless.

SOAP does not implement security.

SOAP is case-sensitive and white-space-sensitive.
Message formats

Message styles

The W3C WSDL 1.1 Specification identifies two message styles: Document and RPC. The purpose of the
styles determines how the content of the SOAP message body is formatted.

Document The SOAP Body contains one or more child
elements called parts. There are no SOAP
formatting rules for what the SOAP Body
contains; it contains whatever the sender
and the receiver agree upon.

Note: There is a Wrapped form of this style
that is required to interoperate with Microsoft
Web services using Document style. There is
no specification that defines this style.

Page 54

Part 5: Developer Guidance

RPC RPC implies that the SOAP Body contains
an element with the name of the method
or remote procedure being invoked. This
element in turn contains an element for each
parameter of that procedure.

Serialization formats

For applications that use serialization/deserialization to abstract away the data wire format, there is one more
choice to be made: the serialization format. The following table describes the two most popular serialization
formats today.

SOAP encoding SOAP encoding uses a set of rules to serialize
the data transferred between the client and the
server. The rules are defined in section 5 of
the WSDL 1.1 Specification. These rules are
also referred to as "section 5 encoding." The
rules specify how to serialize objects, structures,
arrays, and object graphs and directly use the
predefined XML Schema data types. Generally,
an application using SOAP encoding should use
the RPC mssage style.

Literal Data is serialized according to an independent
external schema. There are no preset rules for
serializing objects, structures, and graphics,
etc., in the literal encoding style. The industry is
overwhelmingly embracing XML Schemas.

Note: Document style can be interpreted as either an XML string or as a W3C Document Object Model
(DOM) Document Element. Microsoft has a technique called Wrapped that encapsulates the information being
exchanged, regardless of the style.

Structure

A SOAP message comprises three parts: an envelope, an optional header, and a required body. The envelope
encapsulates the other two elements. The optional header contains one or more header elements that contain
meta-information about the method calls.

Soap Envelope
=soap Envelope=

Header

==zoap: Headar=

Body

= =oap: Body-

==zoap: Faalt=

11046

Envelope The Envelope is the root of the SOAP request.
At a minimum, it defines the SOAP namespace

Page 55

Part 5: Developer Guidance

for SOAP 1.2. The envelope may define
additional namespaces.

Header

Body

The Header contains auxiliary information as
SOAP blocks, such as authentication, routing
information, or transaction identifier. The header
is optional.

The Body contains the main information in one
or more SOAP blocks; for example, a SOAP
block for RPC call. The body is mandatory and it
must appear after the header.

Fault

The Fault is a special block that indicates a
protocol-level error. If present, it must appear
within a Body element.

The SOAP payload is encapsulated within the SOAP envelope, which is part of the HTTP payload. The following figure

shows an HTTP payload that contains a SOAP message.

HTTP Header

SOAPAction

CRILF

S0AP-ENV:Envelope

HTTF Header
SOAPAchion

CR/LF

SOAP-ENV Envelope

11045

Guidance

Header element 1

L

Header element n

SOAP.
ENV:Body

artt?

"ol Method call
element

¢ (G1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

e (G1084: Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema
Definition (XSD) defined by the Community of Interest (COI).

¢ (G1088: Use isolation design patterns to define system functionality that manipulates Web services.

¢ G1093: Implement exception handlers for SOAP-based Web services.

¢ G1095: Use W3C fault codes for all SOAP faults.

Examples

Page 56

Part 5: Developer Guidance

The following is an example of a Web service client requesting celestial information about a particular location and
receiving the results. Both the request and the response are made using the WS-I document literal style of send and
receiving XML SOAP messages.

These listings are the results of using a tunnel monitoring utility called NetTool available from the SourceForge

site http://sourceforge.net/projects/nettool/. The tunnel monitoring tool basically interjects itself between the Web
service client and the Web service producer. The client connects to the tunnel monitor instead of connecting directly to
the producer. The tunnel tool then displays or logs the traffic and forwards it onto the producer. The producer returns
the response to the tunnel tool monitor. The response is also displayed or logged and forwarded back to the client.

Monitoring

Without Tunnel

e, CelestialData cormn.2

e

— — llull_f"luul: - —

1051
With Tunnel
Lacalhast 7000 vrerw. CelestialData com:d0
o o, _—
Calesal Info
Heh Bervice

11054

Request

POST / Docd i ent WebPr oj ect / BeaSer ver s/ Cel esti al | nf oDocDoc. j ws
HTTP/ 1. 0Cont ent - Type: text/xm ; charset=utf-8
Accept: application/soap+xm, application/dinme, nmultipart/related, text/*
User-Agent: Axis/1.1
Host: 192.168. 2. 8: 7003
Cache- Control : no-cache
Pragma: no-cache
SOAPAct i on:
Cont ent - Lengt h: 597
<xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" >

<xsi :type="ns1: Docunent"
POST / DocC i ent WebPr oj ect / BeaSer ver s/ Cel esti al | nfoDocDoc. jws HTTP/ 1.0

Page 57

http://sourceforge.net/projects/nettool/

Part 5: Developer Guidance

Content - Type: text/xm; charset=utf-8

Accept: application/soap+xm , application/dime, nultipart/related,
User-Agent: Axis/1.1

Host: 192. 168. 2. 8: 7003

Cache-Control : no-cache

Pragma: no-cache

SOAPActi on: ""

Cont ent - Lengt h: 597

<?xm version="1.0" encodi ng="UTF-8"?>

<soapenv: Envel ope

>
<soapenv: Body>
<in0
xsi :type="nsl: Docunent "

xm ns: ns1="http://xm . apache. or g/ xm - soap" >
<Docunent Request Dat a>
<ci ty>San Di ego</city>
<stat eOr Provi nce>Cal i f or ni a</ st at eOr Provi nce>
<count r y>USA</ count r y>
<documnent Name>Cel esti al | nf oRpt </ docunment Nanme>
</ Docunent Request Dat a>
</in0>
</ soapenv: Body>
</ soapenv: Envel ope>

Response

Page 58

text/*

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Web Services > Web Services Compliance

P1081: Web Services Compliance

The Web Services Interoperability Organization (WS-I) is an open industry effort to promote Web services
interoperability across platforms, applications, and programming languages.

The WS-I goal is to be a standards integrator to help Web services advance in a structured, coherent manner as
standards evolve independently and in parallel. To support this, WS-I is developing a set of profiles that provide
implementation guidelines for how to use related Web services specifications together for best interoperability.

To date, WS-I has finalized the Basic Profile, Attachments Profile and Simple SOAP Binding Profile.
Guidance

e (G1080: Adhere to the Web Services Interoperability Organization (WS-I) Basic Profile specification for Web
service environments.

e (G1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

e (G1083: Do not pass Web Services-Interoperability Organization (WS-1) Document Object Model (DOM)
documents as strings.

Page 59

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Web Services > WSDL

P1082: WSDL

The Web Services Description Language (WSDL) is an XML-based language that is used to describe a Web service. It
describes the operations that are available from the Web service and it describes the data that flows between the client
or consumer of the Web service and the producer of the Web service. In addition, it describes the endpoint The URL or
location of the Web service on the internet of the Web service provider.

WEDL Definitions

Types

Masvages

Port Typas

Bindings

106D

Guidance

e (G1085: Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD
Programs.

e (G1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.

e (G1084: Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema
Definition (XSD) defined by the Community of Interest (COI).

Examples

The following Java interface file:

...can be used to generate the following WSDL file:

Page 60

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Web Services > Insulation and Structure

P1035: Insulation and Structure

Insulating the user of Web services from the implementation of the services enhances the maintainability and portability
of the overall system and aids in the migration to net-centricity. Application developers can use the facade or adapter
design pattern for Web services to insulate applications from the implementation details of the service. Services can then
change over time to match changing requirements and deployments. Legacy functionality can be similarly wrapped via

a service. It is important to not directly expose vendor-specific functionality via the services interface to enable the ready
reimplementation of the service if necessary.

Guidance

G1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.

(G1088: Use isolation design patterns to define system functionality that manipulates Web services.

e (G1236: Do not hard-code the endpoint of a Web service vendor.

G1237: Do not hard-code the configuration data of a Web service vendor.

Page 61

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Web Services > Error Handling

P1022: Error Handling

One of the most sensitive areas for interoperability is handling errors. No one ever plans on having errors, but designing a
system which does not handle errors in a common and standard way can be disastrous.

Guidance

e G1093: Implement exception handlers for SOAP-based Web services.
e G1095: Use W3C fault codes for all SOAP faults.

e (G1094: Catch all exceptions for application code exposed as a Web service.
Examples

Handling Web service faults

Web service exceptions, known as faults, are handled using standard XML tags as discussed in the W3C SOAP
specification.

Note: The latest version of the SOAP specification (currently 1.2), covers SOAP faults and fault codes.

The examples in this section show the response from throwing system and SOAP exceptions using .NET, BEA
WebLogic, and an Axis client.

Assumptions

Web services are generated automatically using vendor tools, like an Integrated Development Environment
(IDE). When generating the web service, it is the vendor's responsibility to add a layer that converts standard
software-based exceptions to the proper XML fault tags before sending the response back to the client.

Catch exception block

This is the Catch block that receives the error and generates the sample output shown in these examples.

try
{ . . . Il Sone code here
} // End try

catch (Exception exception)

{ Systemout.println(exception.getd ass().getNane());
org. apache. axi s. Axi sFault fault

= (org. apache. axi s. Axi sFaul t) exception;

Systemout.println ("Fault Code: " + fault.get Faul t Code().toString());
Systemout.println ("Fault Node: " faul t.get Faul t Node());
Systemout.println ("Fault Reason: " faul t.get Faul t Reason());
Systemout.println ("Fault Role: " fault.get Faul tRol e());
Systemout.println ("Fault String: " fault.getFaul tString());

} // End catch Exception

+
+
+
+

Throwing a system exception

The examples on this page show the response from throwing a system exception to an Axis client from a .NET
Web service and a BEA WebLogic Web service.

.NET Web service throwing a fault to an Axis client
Page 62

Part 5: Developer Guidance
This C# code shows a general system exception being thrown from a Web service method.

throw new Syst em Exception
("Fault Cccurred");
The client receives an error like this:
[java] org.apache. axi s. Axi sFaul t
[java] Fault Code: {http://schemas. XM.soap. or g/ soap/ envel ope/ } Ser ver
[java] Fault Node: null
[java] Fault Reason: System Web. Servi ces. Protocol s. SoapException: Server was unable to
process request. ---> System Exception: Fault Cccurred
[java] Fault Role: null
[java] Fault String: System Web. Services. Protocol s. SoapExcepti on: Server was unable to process
request. ---> System Exception: Fault Cccurred

BEA WebLogic Web service throwing a fault to an Axis client

This Java code shows a general system exception being thrown from a Web service method.

t hrow new Syst em Excepti on
("Fault Cccurred");
The client receives an error |ike this:
[java] org.apache. axi s. Axi sFaul t
[java] Fault Code: {http://schemas.xm soap. org/ soap/envel ope/} Server
[java] Fault Node: null
[java] Fault Reason: System Web. Services. Protocol s. SoapExcepti on: Server was unable to
process request. ---> System Exception: Fault Occurred
[java] Fault Role: null
[java] Fault String: System Web. Services. Protocol s. SoapExcepti on: Server was unable to process
request. ---> System Exception: Fault Cccurred

BEA WebLogic Web service throwing a fault to an Axis client

This Java code shows a general system exception being thrown from a Web service method.

throw new j ava. | ang. Excepti on
("Fault Cccurred");
The client receives an error like this:
[java] org.apache. axi s. Axi sFaul t
[java] Fault Code: {http://ww.bea.conm 2003/ 04/ wraul t Code/} IWSEr r or
[java] Fault Node: null
[java] Fault Reason:
[java] <xm -fragnent

[java] xm ns: SOAP- ENV="ht t p: / / schemas. xnl soap. or g/ soap/ envel ope/ "
[java]

[java]

[java] >

[java] <f aul t code

[java] >f c: IWBEr r or

[java] </faul t code>

[java] <faultstring>

[java] Faul t Cccurred

[java] </faultstring>

[java] <detail >

[java] <jWErr:jwErrorDetail

[java] >

[java] java.l ang. Exception: Fault Cccurred

[java] at test.exceptions.ex.thisWI| ThrowException()V(ex.jws: 13)
[java] </jwErr:jwErrorDetail >

[java] </detail >

[java] </xm -fragnent>
[java] Fault Role: null
[java] Fault String:
[java] <xm -fragnent

[java] xm ns: SOAP- ENV="ht t p: / / schemas. xrml soap. or g/ soap/ envel ope/ "
[java]

[java]

[java] >

[java] <f aul t code

[java] >f c: IWBEr r or

Page 63

Part 5: Developer Guidance

[javal </faul t code>

[javal <faul tstring>

[javal Fault Cccurred

[javal </faul tstring>

[javal <detail >

[javal <j WErr:jwerrorDetail

[java] >

[javal java. |l ang. Exception: Fault Occurred
[javal at test.exceptions.ex.thisWII ThrowException()V(ex.jws: 13)
[javal </jwErr:jwErrorDetail >

[javal </ detail >

[java] </xm -fragnent>

Throwing a SOAP exception

.NET Web service throwing a SOAP exception to an Axis client

This C# code shows a SOAP exception being thrown from a Web service method.

throw new Syst em Web. Servi ces. Prot ocol s. SoapExcept i on
("Fault Cccurred”,
Syst em Web. Servi ces. Prot ocol s. SoapExcepti on. C i ent Faul t Code,
Cont ext . Request. Url . Absol uteUri

)i

The client receives an error like this:

[java] org.apache. axi s. Axi sFaul t

[java] Fault Code: {http://schemas.xnl soap. org/ soap/ envel ope/}Client

[java] Fault Node: null

[java] Fault Reason: System Web. Servi ces. Protocol s. SoapException: Fault Cccurred
[java] Fault Role: http://local host: 15623/ server/ Cel esti al | nf oDocDocl npl . asnx
[java] Fault String: System Web. Services. Protocol s. SoapException: Fault Cccurred

BEA WebLogic Web service throwing a SOAP exception to an Axis client

This Java code shows a SOAP exception being thrown from a Web service method.

t hrow new j avax. xm . rpc. soap. SOAPFaul t Excepti on
(new javax.xmnl . nanespace. QNane("", "dient"),
"Fault Cccurred",

Nuil
)

The client receives an error like this:

[java] org.apache. axi s. Axi sFaul t

[java] Fault Code: {http://ww.bea.conm 2003/ 04/j wFaul t Code/ } JWSEr r or

[java] Fault Node: null

[java] Fault Reason:

[java]l <xm -fragnment xm ns: SOAP- ENV="htt p: // schemas. xm soap. or g/ soap/ envel ope/ "

[java]

[java]

[java] >

[javal <faul t code>

[javal Cient

[javal </faul t code>

[javal <faul tstring>
[javal Fault Cccurred
[javal </faul tstring>
[javal <faul tactor/>

[java] </xm -fragnent>
[java] Fault Role: null
[java] Fault String:

Page 64

Part 5: Developer Guidance
[java]l <xm -fragnment xm ns: SOAP- ENV="htt p: // schemas. xm soap. or g/ soap/ envel ope/ "

[java]

[java]

[java] >

[javal <faul t code>

[javal Cient

[javal </faul t code>

[javal <faul tstring>
[javal Fault Cccurred
[javal </faul tstring>
[javal <faul tactor/>

[java] </xm -fragnent>

Page 65

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Web Services > Universal Description, Discovery, and Integration (UDDI)

P1075: Universal Description, Discovery, and Integration (UDDI)

The Universal Description, Discovery, and Integration (UDDI) standard is an industry initiative for a Web services
registry. It enables businesses to access a universal pool of Web services. The UDDI registry contains yellow pages,
white pages, and so-called "green pages," like a phone book.

110&2
White pages List point of contact information, such as
. Name
. Address
. Phone
. Fax
. email
Yellow pages List services that are available from businesses, such
as
. Weather data
. Software development
. Project management
Green pages List service properties, such as

. Business processes

. Service descriptions

. Binding information

. Categorization of services

. XML version, type of encryption, and Document
Type Definition (DTD)

Page 66

Part 5: Developer Guidance

UDDI is a platform-independent, open framework that allows automated consumers and suppliers to find each other,
assess mutual compatibilities, negotiate terms, and build the relationship. It supports human interaction as well as
machine-to-machine communication. People can use a UDDI browser to review services and find point-of-contact
information (white pages), and business information (yellow pages).

Like the Domain Name System (DNS), the UDDI registry comprises a network of servers on the internet. It is a SOAP-
based mechanism. The API specification focuses on the storage, organization, and architecture of the registry.

The UDDI project takes advantage of World Wide Web Consortium (W3C) and Internet Engineering Task Force
(IETF) standards such as eXtensible Markup Language (XML) and HTTP and Domain Name System (DNS) protocols.

Guidance

e« (G1127: Use a UDDI specification that supports publishing discovery services.

e (G1131: Use industry standard Universal Description, Discovery, and Integration (UDDI) APIs for all UDDI
inquiries.

Page 67

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Java EE Environment

P1037: Java EE Environment

Java has been extended to handle the complexity of enterprise computing through the Java Enterprise Edition (Java
EE, formerly termed Java 2 Enterprise Edition or J2EE). In the Java EE environment, packaging and deployment is
done using a Java archive file. A Java archive file is a self-contained module that contains all of an application's Java
class files, static files, and deployment descriptor files. Java archive files are created using a jar utility. There are

multiple deployment descriptors that correspond to the type of modules being deployed as indicated in the table below
using the Java EE specification.

Java EE Application Server
Web Containers EJB Containers

RMI, JNDI, JTA JDBC, JMS

F 1

e, O Archive

g

Persistent

Criirrac

The table below shows the Java EE standard deployment descriptor files and the specific applications to which they
apply. See http://java.sun.com/dtd/ for details of each XML file.

Component or Application |Scope Deployment descriptors Packaging Archives
Web application Java EE web. XML .war

Enterprise bean Java EE ejb-jar. XML Jar

Resource adapter Java EE ra. XML .rar

Enterprise application Java EE application. XML .ear

Client application Java EE application-client. XML

The format for a deployment descriptor is defined in both the EJB specification and the servlet specification. The Sun
standards are defined at the following locations:

Java EE environment applications http://java.sun.com/products/ejb/docs.html
Non-JavaEE or standard Webapplications http://java.sun.com/products/servlet/download.html

Note: Some vendors have extensions to the Java EE deployment descriptors or have specific additional
descriptors for their products. Refer to specific vendor documentation for these details.

Guidance

¢ (G1078: Document the use of non-Java EE-defined deployment descriptors.

e G1079: Isolate tailorable data values into the deployment descriptors for Java EE applications.
Page 68

http://java.sun.com/dtd/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html

Part 5: Developer Guidance
e (G1209: For Java, use JDK logging facilities.

Best Practices
« BP1076: When deploying a new application to a WebLogic application server (e.g., ear, war, rar), do not edit
the WebLogic startup file to add application-specific information. This file is used for server startup only and
should not contain application-specific logic. The system administrator must approve and coordinate all updates to
this file.

e« BP1077: Do not edit the conf i g. xm file manually.
Examples

Environment entries

Enterprise JavaBeans (EJB) environment values are defined in the deployment descriptor using the env-
entry element. Use Java EE provider utilities to modify these values during or after deployment.

A bean can access the environment entries with a similar code to the following:
Resource references
Use resource references to define and use environment entries. By default, the initial Java EE environment context

is java:comp/env/. Consequently, it is best to classify all resources into subcontexts of the default. For example,
classify all JDBC definitions using the default context with a JDBC subcontext appended to it. For example:

j ava: conp/ env/j dbc
In the standard depl oynent descriptor, the declaration of a resource reference to a JDBC connection
factory is:
<resource-ref>
<res-ref-nanme>j dbc/ JTMDS</ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</ res-t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>

And the EJB accesses the data source as in the following:

Resource Environment References
. The r esour ce- env-r ef describes administered objects, as opposed to objects that are better
maintained programmatically. Administered objects help define objects that are likely to change between
implementations: for example, JMS or database implementations. It is best to administer these objects along
with other administrative tasks that vary from provider to provider and not within the application. This makes
the code more portable.

The code to access the administered object follows:
Example Deployment Descriptors
ejb-jar.xml

web.xml

/* Descriptor for Application naned: HelloWrld.jsp */
M/WebApp/ (public directory)
Hel | oWorl d. j sp
VAEB- | NF/
Web. XML

Page 69

Part 5: Developer Guidance

Cl asses/ myBean
<?XM. version="1.0" encodi ng="UTF- 8" ?>
<web- app>
<di spl ay- nane>Hel | oWor | dJSP</ di spl ay- nanme>
<servl et >
<servl et - nane>Hel | oWor | d</ ser vl et - nane>
<di spl ay- nane>Hel | oWor | d</ di spl ay- nane>
<jsp-file>/Hell oWrld.jsp</jsp-file>
</ servl et>
<sessi on-confi g>
<sessi on-ti neout >30</ sessi on-ti neout >
</ sessi on-confi g>
<ej b-ref>
<ej b-ref - nane>ej b/ hel | oej b</ ej b-r ef - name>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<honme>Hel | oHome</ home>
<r enot e>Hel | o</ r enot e>
</ ej b-ref>
</ web- app>
Cont act . cl ass

Page 70

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > .NET Framework

P1086: .NET Framework

To address the confusing maze of computer languages, libraries, tools, and toolkits that were necessary for creating multi-
tier applications, Microsoft developed the .NET Framework and integrated it into Microsoft Windows as a component.

It supports building and running multi-tier and Service-Oriented Architectures (SOAS), including Web services and

client and server applications. It simplifies the process of designing, developing, and testing software, allowing individual
developers to focus on core, application-specific code.

Microsoft summarizes the .NET Framework as
. A consistent, language-neutral, object-oriented programming environment.

. A code-execution environment that minimizes software deployment and versioning conflicts, guarantees safe
execution of code, and eliminates the performance problems of scripted or interpreted environments.

. A consistent development environment.

. A framework composed of two key parts: the Common Language Runtime (CLR) and the Unified Class
Libraries.

In the Microsoft .NET development environment, a programmer writes software in any one of several Visual .NET
languages. These use a single, unified, object-oriented, hierarchical, and extensible set of class libraries to access the
system and common services such as XML web services, enterprise services, ADO.NET, and XML. Next, the language
source code is compiled into an intermediate Microsoft Intermediate Language (MSIL), which is later translated into
platform-specific native code that uses the CLR.

3T
e i) e
; “Wisual Visual “Wizual Wisual G
! Basic G4+ J# C#
MNET NET MET NET
i e
Mlicrosof ndenmnodiale Uinified class ibrany
Languags (MSIL) .NET
+ Framework
Mative code
Commaon Language Runtime (CLR)

k

11064

Guidance

e (G1101: Use Web services to bridge Java EE and .NET.

e G1210: For .NET, use Debug and Trace from the Syst em Di agnosti cs namespace.
Best Practices

e BP1097: Use the Syst em Text . St ri ngBui | der class for repetitive string modifications such as appending,
removing, replacing, or inserting characters.

Page 71

Part 5: Developer Guidance
e BP1098: Write all .NET code in C#.

e« BP1100: Compile all .NET code using the .NET Just-In-Time compiler.

Page 72

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > CORBA

P1011: CORBA

CORBA is the acronym for Common Object Request Broker Architecture. It is the Object Management Group (OMG)
open, vendor-independent architecture and infrastructure that computer applications use to work together over networks.
Using the Internet InterORB Protocol (IIOP), a CORBA-based program from any vendor, on almost any computer,
operating system, programming language, or network, can interoperate with a CORBA-based program from the same or
another vendor on almost any other computer, operating system, programming language, or network.

In general, the code that needs to be created to access an object remotely using CORBA can be implemented using well
established and well understood design patterns. Consequently, it is not difficult to write but it is tedious and subject to
human error during the writing process because much of it is of a cut-and-paste nature. Therefore, most Object Request
Broker (ORB) vendors have developed code generators that can auto-generate the required infrastructure code given the
definition of the interface between a client and a server. The use of these auto-generators is strongly encouraged.

The following diagram illustrates auto-generation of the infrastructure code from an interface defined using the CORBA
Interface Definition Language (IDL).

|
........................ ,
Stubs

........................ i !
ctinr | s:;fzp
Sicte g Server Impl
Code : tads o

11069

This diagram illustrates how the generated code is used within the CORBA infrastructure.

1071

Page 73

Part 5: Developer Guidance
Key features

Some of the key features of interest in the CORBA specifications follow:
. Internet InterORB Protocol (IIOP)

. Dynamic Invocation Interface (DII)

. Dynamic Skeleton Interface (DSI)

. Interface Repository (IFR)

. Objects by Value (OBV)

. CORBA Component Model (CCM)

. Portable Object Adapter (POA)

. General InterORB Protocol (GIOP)

. Java to Interface Definition Language (IDL) mapping

Guidance
e (G1118: Localize CORBA vendor-specific source code into separate modules.
e« (G1202: Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).
e (G1119: Isolate user-modifiable configuration parameters from the CORBA application source code.

e (G1204: Create configuration services to provide distributed user control of the appropriate configuration
parameters.

e (G1205: Use non-source code persistence to store all user-modifiable CORBA service configuration parameters.
« G1121: Do not modify CORBA Interface Definition Language (IDL) compiler auto-generated stubs and skeletons.
e (G1123: Use the Fat Operation Technique in IDL operator invocation.

e (G1203: Localize frequently used CORBA-specific code in modules that multiple applications can use.

Best Practices
e BP1231: Use CORBA: : String_var in IDL to pass string types in C++.
« BP1232: Do not pass or return a zero or null pointer; instead, pass an empty string.
e« BP1233: Do not assign CORBA: : Stri ng_var type to | NOUT method parameters.

e BP1234: Assign string values to QUT , | NOUT , or RETURN parameters using operations to allocate or duplicate
values rather than creating and deleting values.

e BP1235: Assign string values to returned-as-attribute values using operations to allocate or duplicate values rather
than creating and deleting values.

Page 74

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Software Communication Architecture

P1087: Software Communication Architecture

The Software Communications Architecture (SCA) establishes an implementation-independent framework with
baseline requirements for the development of software for an established hardware platform, such as software defined
radios. The SCA is an architectural framework that was created to maximize portability, interoperability, and configurability
of the software while still allowing the flexibility to address domain specific requirements and restrictions. Constraints on
software development imposed by the framework are on the interfaces and the structure of the software and not on the
implementation of the functions that are performed.

The framework places an emphasis on areas where reusability is affected and allows implementation unique
requirements to determine a specific application of the architecture. SCA specifications incorporate accepted industry
standards such as a subset of the Portable Operating System Interface (POSIX) specification and the Object
Management Group (OMG) CORBA specification.

SCA includes a real-time operating system functionality to provide multi-threaded support for all software executing on
the system. Software can include SCA applications, devices, and services. The exact functionality supported by the
Operating Environment is described by the Application Environment Profile (AEP) which is a subset of the POSIX
specification.

The OMG Domain Special Interest Group for Software Radios (SWRADIO DSIG) and Software Defined Radio Forum
(SDRF) are working together towards building an international commercial standard based on the SCA.

The purpose of this perspective is to provide guidance and reference material for Programs providing products and
services using SCA in order to increase interoperability and net-centricity.

Guidance

¢ G1713: Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a
minimum, provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

e G1714: Develop Software Communications Architecture (SCA) applications to use only Operating
Environment functionality defined by the SCA Application Environment Profile.

Best Practices
« BP1715: Design SCA log services according to the OMG Lightweight Log Service Specification.
« BP1716: Develop applications for SCA-compliant systems using a standard higher order language.

« BP1880: Justify, document, and obtain a waiver for all radio terminal acquisitions that are not JTRS/SCA
compliant.

Page 75

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Data Distribution Service (DDS)

P1190: Data Distribution Service (DDS)

Data Distribution Service for Real-time Systems is an Object Management Group (OMG) specification for distributing
data messages using the Publish-Subscribe design pattern. It defines a common application programming interface
(API) that cleanly separates the data distribution functionality from the application functionality. DDS also simplifies the
complexity associated with application programming by separating the details of publishing data messages from those for
subscribing to data messages using a Quality of Service (QoS) approach. The implementation of the interface effectively
creates a data distribution service that applications can access.

The use of QoS makes DDS especially appealing as an integration middleware in heterogeneous systems. DDS QoS
allows fine-grained tuning of the properties for each information flow including the lowest level data writer and data reader.
Therefore, the system can devote its resources to the more critical flows ensuring they are achievable. Also, the use of
QoS combined with the inherent real-time nature of the DDS allows DDS solutions to span the complete spectrum from
Enterprise (non-real-time) to hard real-time applications as shown in the following figure.

ava ATSJ [soft AT} n

< Java S JMS -
CORBA RT CORBA

-< Data Distribution Service (DDS) >-

Men-real-time Soft real-time Hard real-time Extreme r'eal-timer
Mot Adapted from NEWC.DD Od Documantation

Messaging Technelogies and Standards

11155

DDS Profiles

The specification divides the complexity of the full data distribution functionality into five profiles (Minimum,
Ownership, Content Subscription, Persistence, and Object Model) to help applications meet their individual
requirements. The applications can use any or all of the profiles to access the Data Distribution Service.

Page 76

http://www.omg.org/docs/formal/07-01-01

Part 5: Developer Guidance

CoS-driven Data-Centric Model and Real-Time
PulvSub Message Senvice

Azynchronous one-to-many real-time data communication
Dynamic data-fios based on current-interest (pubiut)
Platfarm independent data-madel (I0L)

Sirong-type interfaces for mulliple languages

Informeation Crmership management for replication

= Reducing spolication-comglexity
= |mproving SEtem-peronmance

1196

DDS Compliance Profiles

Data-Centric il ormation Management

* Faull Wolersnt and global persistence of selected dea
* Guararteed dats evaiabilty supports spplication faut-toerance
* Corferd-sware fitering snd dynamic queries:

Local Object-Cache interface to the il onmation

= Local object-model based on the DLRL meta-model

= The meta-model can manage object relationships and
supports nathe language constructs

Minimum This profile contains just the mandatory features
of the DCPS layer. None of the optional features
are included.

Ownership This profile adds the following:

. the optional setting EXCLUSI VE of the
OWNERSHI P kind

. support for the optional
OMERSHI P_STRENGTH policy

. the ability to set a depth > 1 for the
HI STORY QoS policy.

Content-Subscription

This profile adds the optional classes

Content Fi |l t eredTopi ¢, QueryCondi ti on,
and Mul ti Topi c. This profile also enables
subscriptions by content.

Persistence

This profile adds the optional QoS Policy
DURABI LI TY_SERVI CE as well as the optional
settings TRANSI ENT and PERSI STENT of the
DURABI LI TY QoS Policy kind. This profile
enables saving data into either transient
memory, or permanent storage so that it can
survive the lifecycle of the Dat aW i t er and
system outings.

Object Model

This profile includes the DLRL and also includes
support for the PRESENTATI ONaccess_scope
setting of GROUP.

Page 77

Part 5: Developer Guidance
Example

The following diagram depicts using a data-oriented approach to solve a typical distributed system problem.
The goal in this example is to maintain the temperature in many buildings, using embedded controllers each
connected to a number of sensors. Each of these sensors and control processes are connected through a
transport mechanism such as Ethernet and use basic protocols such as TCP-UDP/IP to provide standardized
communication.

=

Building 3

Building 2

Building 1

Controllers
1..n

\

.-

TemperSture |\
Sensors E \\
1...n o
|
11147

To achieve data integrity and fail-over capabilities, multiple controllers and sensors are deployed in each building.
Controllers within a building collaborate in the process of collecting data from the various sensors. Applications
access and manipulate the data through the use of a global data space.

Data-centric technologies such as databases and Service-Oriented Architecture Web service-based applications
can interoperate seamlessly with the embedded sensors. These technologies provide a standards-based way for
external applications to get, process and manipulate real-time sensor data with out having to know the specifics
of the real-time data infrastructure. Furthermore, decoupling the data from the technology that manipulates the
data contributes to developing a truly data-centric application. In this example, the external access and monitoring
applications can simply receive real-time updates from any sensor as well as issue commands to the various
controllers via DDS, SQL, etc., to maintain suitable temperatures.

Data Model

For simplicity, this example will focus on the data the sensors send to their controller and how they can be
distributed throughout the entire system. The first step in a data-centric approach is to describe the data format
carefully in a standards-based way, either IDL or XML, and give it a Topic name. Topics are the element of the
DDS middleware publish-subscribe standard which identify the data objects and provide the basic connection
between publishers and subscribers. Subscribers (the Controllers in this example) register Topics with the
middleware that they wish to receive. Publishers (the individual sensors in this example) register Topics with the
middleware that they will send. If the Topics do not match, effective communication does not take place.

Page 78

Part 5: Developer Guidance

Topics enable one to find specific information sources when architecting a loosely coupled system; that is, one
which does not know a priori how many sensors or controllers there are going to be or where they all are. The
Controller can simply subscribe to TenpSensor , the Topic's name, and receive all the sensor updates for that
building. Similarly, a sensor does not need to know if it is sending its data to one or multiple Controllers or even an
external data store.

Specification of the Topic's name is a key element in a data-centric approach to creating open real-

time systems. One could name each sensor's Topic based on its unique location in the building,

FI oor 12RoonBSensor 14 for example, but the Controller would then need to be configured every time a sensor
is added or removed from the system. Topics (name and type) define the standard interface for the distributed
system; chose them appropriately.

Data Type

Specification of the Topic's data type is equally important as the Topic's name. DDS specifies the use of a subset
of the Interface Definition Language (IDL) for specifying a Topic's data type.

Note: IDL readily maps to XML and SQL semantics.

struct BensorData

{
long id; //@key
tloat temp;

bi

1123

In the definition of the Topic's type, chose one or more data elements to be a Key. Keys provide scalability and
the communication infrastructure can use the key to sort and order data from many sensors. In this example,
without keys, one would need to create individual Topics for each sensor. Topic names for these topics might be
Sensor _1, Sensor _2, and so on. Therefore, even though each Topic is comprised of the same data type, there
would still be multiple Topics. With keys, there is only one topic, TenpSensor , used to report temperatures.

New sensors can be added without creating a new Topic. The publishing application would just need to set a new
id when it was ready to publish. An application can also have a situation where there are multiple publishers of the
same Topic with the same key defined. This enables the application to provide redundancy. Per this example, two
sensors in the same room using the same Key value will measure the same piece of information. Managing the

redundancy, should one or both sensors report to the controller, is accomplished though Quality-of-Service (Qo0S).

Domains and Partitions

A Domain is the basic DDS construct used to bind individual publications and subscriptions together for
communication. A distributed application can elect to use single or multiple DDS Domains for its data-centric
communications. A Partition is a way to separate Topics logically within a DDS Domain.

In the context of the example, Partitions can group sensors on different floors. For example, to divide the building
into different zones where each zone is controlled by a dedicated Controller, the Sensor and Controller could set
the Partition to Fl oor 1 and Fl oor 1- 6, respectively. The Controller will receive data from all Sensors on Floors
1 through 6. Using Partitions makes it easy to group which Sensors are hooked to a Controller and a Controller
can take over a different zone by changing or adding to its Partition list.

In the example, different buildings map to different DDS Domains. Domains isolate communication, promote
scalability and segregate different classifications of data.

Quiality of Service

Page 79

Part 5: Developer Guidance
The following briefly details how one might leverage a few of the DDS QoS Policies for this example.

Ownership

The Ownership QoS specifies whether or not multiple publishers can update the same data object and is how to
achieve fault-tolerance using DDS.

Returning to the example, having multiple sensors in the same room and only wanting to get data from the primary
(as long as it is functioning), then the Ownership QoS policy is set to Exclusive, stating that only one sensor can
update that keyed value. Setting the Ownership QoS value to Shared indicates that there can be multiple sensors
in the same room all reporting the same piece of keyed data. In this case the Controller would get all updates from
all sensors and treat the values as the same measurement.

Durability
The Durability QoS specifies whether past samples of data will be available to newly joining subscribers.

Considering the example, if a Controller were to reboot, rather than require all sensors to resend their data, or
require the data to be sent at a periodic rate in case the systems reboots, one simply gets the latest published
value for every attached sensor. This effectively decouples the system in time and provides a high degree of data
integrity.

History
History specifies how many data samples are stored for later delivery.

In the case of the example, a rebooted controller may want the last 5 samples from its sensors, so that it can make
sure that readings are consistent.

Reliability

The Reliability QoS may be set on a per Topic basis and informs the middleware that the Subscription should
receive all data (no missed samples) from a Publication even over non-reliable transports. Generally for periodic
publications Reliability doesn't need to be set, since it can just get the updated value one sample period later.

Although periodic sensor data doesn't need to be delivered reliably, synchronization commands between
Controllers in this example could be.

Summary
This simply stated example is surprisingly complex, containing many elements of real-time messaging, data

integrity and failover capabilities, integration with databases, web services, as well as scalability and modularity
concerns while remaining data-centric.

Detailed Perspectives
. Decoupling Using DDS and Publish-Subscribe
. DDS Quality of Service (QoS)
. DDS Data-Centric Publish-Subscribe (DCPS)

. DDS Data Local Reconstruction Layer (DLRL)

Page 80

Part 5: Developer Guidance

Part 5: Developer Guidance > Middle Tier > Data Distribution Service (DDS) > Decoupling Using DDS and Publish-
Subscribe

P1191: Decoupling Using DDS and Publish-Subscribe

A fundamental tenet of data-centricity and DDS is the decoupling between information providers and consumers. The
decoupling is conceptually anonymous in that the producers do not need to know who the consumers are, and similarly
the consumers do not need to know who the producers are. They are in fact each communicating independently using
the DDS Domain (i.e., Global Data Space). Persistence services in the Global Data Space allow data written by an
application to be available to late joining applications, even if the original application is no longer present.

While communications can precede anonymously, DDS does offer the means for an application to detect its
communication partner. A Writer can see who the matched Readers are, and similarly a Reader can identify the matched
Writers. If so requested, the application is given notification of new matches and can even "veto" specific Readers or
Writers.

Decoupling and anonymity is accomplished using the publish-subscribe paradigm. Applications that want to provide
information indicate their intent to publish by creating a DataWriter and specifying the offered Quality of Service (QoS)
and a Listener. Applications that want to access information indicate their intent to subscribe by creating a DataReader
and specifying the requested QoS and a Listener.

Publishers are matched with subscribers by DDS using the Topic and the QoS, and DDS automatically sets up the
needed communication paths and resources such that information (data updates) can flow directly with the highest
possible performance. Listeners are used to indicate to the application that certain events of interest have taken place,
such as the arrival of new information for Dat aReader s, violations in the QoS contracts, matching of new Publishers/
Subscribers or other middleware-observed events.

QoS contracts provide the means for applications/components to remain modular and independent from each other
while at the same time having some control over how the information is provided or delivered. For example, a reading
application may have some minimum requirements regarding reliability, ordering, coherence, or frequencies of updates,
and a writing application may have some resource limits with regards to how much history it can maintain or how many
readers it can handle. The QoS contract can specify these requirements and DDS checks and monitors them. In addition
QoS can configure resources, message priorities, history, etc. The ability to fine-tune separately the behavior of each
Dat aW it er and Dat aReader is one of the reasons why DDS can span the range from real-time to near-time to
enterprise systems.

Guidance

G1807: Check the return values of Data Distribution Service (DDS) functions.
e (G1802: Catch all Data Distribution Service (DDS) events.
e (G1809: Handle all Data Distribution Service (DDS) events using one of the subscriber access APIs.

e« (1810: Use data models to document the data contained within the Data Distribution Service (DDS) Data-
Centric Publish Subscribe (DCPS).

Best Practices

« BP1811: Isolate all use of vendor specific extensions to the Data Distribution Service (DDS).

e« BP1825: Usethei gnore_partici pant operation on the DomainParticipant to deny access to another
DomainParticipant trying to join a Data Distribution Service (DDS) Domain.

e BP1827: Use the i gnore_publi cationandignore_subscri pti on onthe DomainParticipant to deny
access to a Data Distribution Service (DDS) Topic by a specific DataWriter or DataReader.

« BP1830: Use the Data Distribution Service (DDS) Content Profile to tailor subscription message data.

« BP1831: Use the Data Distribution Service (DDS) Persistence Profile to ensure durable data delivery.
Page 81

Part 5: Developer Guidance
Part 5: Developer Guidance > Middle Tier > Data Distribution Service (DDS) > DDS Quality of Service

P1192: DDS Quality of Service

Quality of Service (QoS) is a general concept that specifies the behavior of a service. Programming service behavior
by means of QoS settings offers the advantage that the application developer only indicates what is wanted rather than
how to achieve the specific QoS. Generally speaking, QoS is comprised of several QoS policies. Each QoS policy is then
an independent description that associates a name with a value. Describing QoS by means of a list of independent QoS
policies gives rise to more flexibility.

Note: As Service-Oriented Architecture (SOA) systems evolve and become richer in the number of publishers
and subscribers supported with time, the use of well defined and specific QoS parameters becomes essential in
managing the complexity of the system and the loosely coupled nature of the services.

Data-centric communication using DDS provides the ability to specify various parameters like the rate of publication,
rate of subscription, how long the data is valid, and many others. These QoS parameters allow system designers to
construct a distributed application based on the requirements for, and availability of, each specific piece of data. A data-
centric environment allows a communication mechanism that is custom tailored to the distributed application's specific
requirements yet remains a loosely coupled design and architecture.

The ability to set QoS on a per-entity basis is a significant capability provided by DDS. Being able to specify different
QoS parameters for each Topic, Publisher or Subscriber gives developers many options when designing their systems.
Through the combination of these parameters, a system architect can construct a distributed application to address an
entire range of requirements, from simple communication patterns to complex data interactions.

Guidance

e G1771: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the
behavior of a publisher.

e (G1801: Explicitly define a Topic Quality of Service (QoS) for each Data Distribution Service (DDS) Topic within
a DDS Domain.

e (G1803: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe real-
time messaging criteria for Publishers.

e (G1804: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe
DataWriter.

¢ (G1805: Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the
behavior of the Subscriber.

* (G1806: Explicitly define the Request-Offered Data Distribution Service (DDS) Quality of Service (QoS) Policies
to describe the behavior of the DataReader.

e (G1808: Handle all Data Distribution Service (DDS) Quality of Service (QoS) contract violations using one of the
Subscriber access APIs.

Best Practices

e« BP1812: Use the RELI ABI LI TY Quality of Service (QoS) kind BEST_EFFORT for Data Distribution Service
(DDS) Topics that are written frequently where missing an update is not important because new updates occur
soon thereatfter.

« BP1813: Use the RELI ABI LI TY Quality of Service (QoS) kind RELI ABLE for Data Distribution Service (DDS)
Topics written sporadically or where it is important that the current data in the Topic is received reliably.

Page 82

Part 5: Developer Guidance

BP1814: Use the DEADLI NE Quality of Service (QoS) to for Data Distribution Service (DDS) DataWriters for
which data is published at a constant rate.

BP1815: Use the DEADLI NE Quality of Service (QoS) for Data Distribution Service (DDS) DataReaders that
expect data to be sent to them at a constant rate.

BP1816: Use the LI VELI NESS Quality of Service (QoS) for Data Distribution Service (DDS) Topics where
data is not sent sporadically; that is, it is sent with no fixed period.

BP1817: Use the MANUAL_BY_TOPI C setting of the LI VELI NESS Quality of Service (QoS) for Data Distribution
Service (DDS) Topics where the presence and health of the DataWriter is critical to the proper operation of the
system.

BP1818: Use the HI STORY Quality of Service (QoS) kind KEEP_LAST for Data Distribution Service (DDS)
Topics that represent system state, in that new data-values replace the old values for each Keyed data-object.

BP1819: Use the HI STORY Quality of Service (QoS) kind KEEP_ALL for Data Distribution Service (DDS)
Topics that represent events or commands where all values written should be delivered to the readers (i.e., new
values do not replace old values).

BP1820: Use TI ME_BASED FI LTER Quality of Service (QoS) to protect DataReadersthat cannot handle all the
traffic that could be written by the writers on that Data Distribution Service (DDS)Topic and just need periodic
updates on the most current data-values.

BP1821: Use the Data Distribution Service (DDS) LI FESPAN Quality of Service (QoS) to indicate that data is
only valid for a finite time period and stale data is discarded after a certain expiration time elapses.

BP1822: Use the PARTI TI ON Quality of Service (QoS) to limit the scope of the data written/read on a Data
Distribution Service (DDS) Topic to only the writer/readers that have a common partition.

BP1823: Use the Data Distribution Service (DDS) RESOURCES LI M TS Quality of Service (QoS) in platforms
with limited memory or in real-time systems to properly configure the resources that will be utilized and avoid
exhaustion of system resources at run-time.

BP1824: Use the USER_DATA Quality of Service (QoS) to communicate metadata on the DomainParticipant
that may be used to authenticate the application trying to join the Data Distribution Service (DDS) Domain.

BP1826: Use the USER_DATA Quality of Service (QoS) on the DataWriters and DataReaders to communicate
metadata that may provide application-specific information of the entity writing/reading data in a Data Distribution
Service (DDS) Domain.

BP1828: Use the Data Distribution Service (DDS) OANERSHI P Quality of Service (QoS) kind set to SHARED
when each unique data-object within a DDS Topic to which multiple DataWriters can write.

BP1829: Use the Data Distribution Service (DDS) OANERSHI P Quality of Service (QoS) kind set to
EXCLUSI VE when multiple DataWriters cannot write each unique data-object within a DDS Topic simultaneously.

Page 83

Part 5: Developer Guidance

Part 5: Developer Guidance > Middle Tier > Data Distribution Service (DDS) > DDS Data-Centric Publish-Subscribe
(DCPS)

P1193: DDS Data-Centric Publish-Subscribe (DCPS)

The Data-Centric Publish-Subscribe (DCPS) interface is targeted toward the efficient delivery of the proper information
to the proper recipients. It provides the application with a data-centric information model and is responsible for controlling
the lower level layer of the DDS infrastructure targeted toward the efficient and reliable delivery of the information to

its intended recipients. The DCPS architecture is comprised of five modules. The modules build upon each other in a
hierarchical inheritance structure. The following table captures the purpose of each of the five modules.

Infrastructure Model Defines the abstract classes and the interfaces that are
refined by the other modules; also provides support for
the two interaction styles (natification- and wait- based)
within the middleware

Domain Module Contains the DomainParticipant class that acts as an
entrypoint of the Service and acts as a factory for many
of the classes; the Domai nPar ti ci pant also acts
as a container for the other objects that make up the
Service

Topic-Definition Module Contains the Topic, Content Fi | t er edTopi c, and
Mul t i Topi c classes, the Topi cLi st ener interface,
and more generally, all that is needed by the application
to define Topic objects and attach QoS policies to them

Publication Module Contains the Publisher and DataWriter classes
as well as the Publ i sher Li st ener and
Dat aW i t er Li st ener interfaces, and more
generally, all that is needed on the publication side

Subscription Module Contains the Subscriber, DataReader,
ReadCondi ti on,and Quer yCondi ti on classes,
as well as the Subscri ber Li st ener and
Dat aReader Li st ener interfaces, and more
generally, all that is needed on the subscription side

The following is a UML Class diagram that represents the five modules and how they relate to each other.

1

Domain Module

Publication Module Subscription Module
Topic Module
k.
|
Infrastructure
“odule
111949

Page 84

Part 5: Developer Guidance
Detailed Perspectives

. DDS Domains - Global Data Spaces
. Reading/Writing Objects within a DDS Domain

. Messaging within a DDS Domain

Page 85

Part 5: Developer Guidance

Part 5: Developer Guidance > Middle Tier > Data Distribution Service (DDS) > DDS Data-Centric Publish-Subscribe
(DCPS) > DDS Domains - Global Data Spaces

P1194: DDS Domains - Global Data Spaces

DDS allows application developers to create a collection of virtual shared Global Data Spaces where separate
application processes can share data anonymously. Processes can access (read and/or write) data in the Global Data
Space as well as exchange messages on the associated DDS Domain.

A DDS Global Data Space (called a DDS Domain) is identified by a domainld that represents an isolated Data Space.
The Data Space exchanges no information or messages with other domains. The operating system maintains isolation
between DDS Domains by using different port numbers. Each computer process (running on behalf of some user or
application) must attach to the desired DDS Domain by creating a DDS DomainParticipant. Each Domai nParti ci pant
is owned by the creating process and is only accessible to it.

DDS Domain 1
® User A.pplitsliu .
L __._ Participant W
AL 29 219
1 DDS

Glokal Data Space

Application
T

Note: The centralized image of a Global Data Space is just a convenient metaphor. In reality the DDS
specification mandates that there should be no centralized implementation of the global data and data updates
must flow directly from the writer to the readers.

A distributed system may employ multiple DDS Domains (i.e., Global Data Spaces), each identified by a
different dorai nl d. A single application process may access multiple Global Data Spaces by creating multiple
Domai nPar ti ci pant s, each associated with one of the Global Data Spaces.

Page 86

Part 5: Developer Guidance

“Application

1201

Guidance
e G1770: Explicitly define the Data Distribution Service (DDS) Domains for the system.

e G1772: Assign a unique identifier for each Data-Distribution Service (DDS) Domain within the system.

Page 87

Part 5: Developer Guidance

Part 5: Developer Guidance > Middle Tier > Data Distribution Service (DDS) > DDS Data-Centric Publish-Subscribe
(DCPS) > Reading/Writing Objects within a DDS Domain

P1195: Reading/Writing Objects within a DDS Domain

Address the Data Objects in the Global Data Space by means of a Topic (an application-chosen string that encodes

a homogeneous collection of objects) and a Key (a set of fields inside the data object that uniquely identifies the object
within the collection). A DDS Topic is an application-chosen string (such as Tenper at ur e) that has an associated
schema or format representing the type of the data objects (for example the sensor ID, the value, the units, the location
of the sensor, the time-stamp, etc.). The DDS Key is specific to each DDS Topic and uniquely identifies each Data Object
within the Topic.

Pictorially one could think of each Topic in the Global Data Space representing a table of related data objects where each
row represents the value of an individual data object the columns define the schema (data type of the object), and the
key is the column(s) that defines the identity of each object. The table below depicts this concept for the hypothetical
Tenper at ur e Topic.

Sensorld (Key) Value : float Units : string Location : string Timestamp

4535 23 Celsius Building 234, Room |Tue Oct 31 15:47:42
13 PST 2006

5677 12 Celsius Building 121, Tue Oct 31 15:44:42
Furnace 23 PST 2006

Another example is an Airport Information application that defines the Topic DepartingFlights with a schema consisting of
fields containing the following information: Airline, flight number, destination airport, departure terminal, gate, scheduled
departure time, expected departure time, and status. In this case the combination of fields Airline and Flight Number
provides the Key that uniquely identifies each flight. Updates to the global data space will provide new estimated
departure times, departing dates, etc. A display application may read this topic to show all the flights departing in the next
three hours.

Airline Flight Destination Departure |Departure | Scheduled |Expected Status
(Key) Number Terminal Gate Departure |Departure

(Key)
SWA 023 PDX A 12 10:30 14:05 Departed
UA 119 LAX A 06 14:27 14:40 Boarding
AS 543 ANC A 03 14:10 14:20 Boarding
KLM 006 AMS A 14 14:35 14:35 Boarding
SQ 012 SIN B 03 15:00 15:20 Go to Gate
JL 001 NRT B 33 15:45 15:45 Go to Gate
LOT 007 WAW B 02 16:30 16:30 Wait

Page 88

Part 5: Developer Guidance

DDS
Global Data Space

Units
4535 23 Celsws | 234
Celsus

%M Destination

Lax

1202

Guidance

e« (1810: Use data models to document the data contained within the Data Distribution Service (DDS) Data-
Centric Publish Subscribe (DCPS).

e (G1141: Use standard data models developed by Communities of Interest (COI) as the basis of program or
project data models.

e (G1146: Include information in the data model necessary to generate a data dictionary.
e (G1147: Use domain analysis to define the constraints on input data validation.

¢ (G1148: Normalize data models.

Best Practices

e BP1145: Use vendor-neutral conceptual/logical models.

e« BP1254: For command-and-control systems, use the names defined in the C2IEDM for data exposed to the
outside communities.

« BP1397: For new systems, identify and develop use cases or reuse existing use cases as appropriate as early in
the data engineering process as possible to support data model development.

e BP1404: For DoD Programs requiring a data model, the NATO Generic Hub v.5 model (LC2IEDM) is an example
of a successful COI-developed model.

Page 89

Part 5: Developer Guidance

Part 5: Developer Guidance > Middle Tier > Data Distribution Service (DDS) > DDS Data-Centric Publish-Subscribe
(DCPS) > Messaging within a DDS Domain

P1196: Messaging within a DDS Domain

A DDS Topic acts like a virtual message-queue or pipe when DDS is used for messaging. Writers send messages though
the Topic and readers access messages using the same Topic.

Topics for DDS messages are bound to an application-defined schema in advance; for example, an Alarm message
where the schema consists of source identifier, the kind of alarm, the location, a time-stamp, and the urgency level.
DomainParticipants can publish and subscribe messages by specifying the Topic and the associated contents.

The Topics used for messaging also live within a DDS Domain (i.e., Global Data Space) identified by a unique
Donai nl d. Similar to the data-object paradigm, the middleware keeps the messaging Topics separated within different
DDS Domains by using different port numbers.

DDsS
Global Data Space

W
Participant

210

é Alarm Topic

210

11203

Note: The centralized image of a pipe is only a convenient concept. In reality, the DDS specification mandates
that there should be no centralized implementation of a pipe in DDS. Messages must flow directly from the
sender to the receivers.

The distinction between reading/writing data and receiving/sending messages is essentially a property of the Topic. Some
Topics represent data (if the identify certain fields as Keys) and others represent messages (if they do not contain specify
Keys). In addition, use different Quality of Service settings to attain the proper semantics. For example, associate Topics

representing data with a Hl STORY QoS setting of KEEP_LAST whereas Messages typically use a Hl STORY setting of
KEEP_ALL.

Note: For more details on this subject please refer to the introductory material on DDS available at the OMG
DDS Portal.

Guidance

e G1796: Explicitly define all the Data Distribution Service (DDS) Domain Topics.
e G1798: Explicitly define all the Data Distribution Service (DDS) Domain data types.
e G1799: Explicitly associate data types to the Data Distribution Service (DDS) Topics within a DDS Domain

e (G1800: Explicitly identify Keys within the Data Distribution Service (DDS) data type that uniquely identify an
instance of a data object.

Page 90

http://portals.omg.org/dds
http://portals.omg.org/dds

Part 5: Developer Guidance

e (G1801: Explicitly define a Topic Quality of Service (QoS) for each Data Distribution Service (DDS) Topic within
a DDS Domain.

Page 91

Part 5: Developer Guidance

Part 5: Developer Guidance > Middle Tier > Data Distribution Service (DDS) > DDS Data Local Reconstruction Layer
(DLRL)

P1197: DDS Data Local Reconstruction Layer (DLRL)

The Data Local Reconstruction Layer (DLRL) is an optional part of the Data-Distribution Service (DDS) specification
that provides a local object-cache abstraction built upon the core DCPS layer and requires application objects to comply
with the DLRL object metamodel which includes collections and relationships.

Note: The DLRL, a recent addition to the DDS specification, is particularly rich; implementations using this
upper-level profile of the specification are emerging.

Application developers use the DLRL to do the following:
. Describe classes of objects with the associated methods, data fields and relations
. Attach data fields to Data-Centric Publish-Subscribe (DCPS) entities

. Use native language constructs to manipulate objects (i.e., create, read, update, delete) using native language
constructs to seamlessly interact with the DCPS layer

. Manage objects and pointers to objects in a cache
Best Practices

« BP1832: Handle all Data Distribution Service (DDS) Data Local Reconstruction Layer (DLRL) Exceptions.

« BP1833: Use the Data Distribution Service (DDS) Object Model Profile for accessing message data as objects.

Page 92

Part 5: Developer Guidance
Part 5: Developer Guidance > Data Tier

P1015: Data Tier

The data tier is responsible for storing data. It does not (should not) contain any business logic (which belongs in the
middle tier) and handles only that processing required to access data and maintain its integrity.

Tier Architecture
Presentation | | B__, ="-":|
Tier .n,"u..g... =3

T LUV — | >
i “%,33’_,“} ”‘3) {‘*"“)() e
= & EID

: v . B
g‘:: 1.-:;:.::-- :m n.im b
£l [N i
1072

Current guidance is in the following perspectives:

. Decouple from Applications

. Database Implementations

. Database Development

. RDBMS Internals

Most modern multi-tiered systems need to collect, store, retrieve and manage persistent data. This data persistence is

the responsibility of the data tier. In essence, the data tier functionality is accomplished with modern COTS Database
Management Systems (DBMSs) such as MySQL, Oracle, SQL Server, or Sybase Adaptive Server Enterprise (ASE).

Page 93

Part 5: Developer Guidance
Part 5: Developer Guidance > Data Tier > Decouple from Applications

P1017: Decouple from Applications

To promote database independence, access the database only through open-standard interfaces. The goal is to
swap out data sources and/or connect to multiple data sources without affecting the application or increasing software
maintenance costs. Data-level adapters allow applications to access data through database calls that are native to
the requesting application. At this point, the business logic can be shared with other data sources. This positions the
application to move business logic from the database to the middle tier to support database independence.

Guidance

e (G1014: Access databases through open standard interfaces.

Page 94

Part 5: Developer Guidance
Part 5: Developer Guidance > Data Tier > Database Implementations

P1014: Database Implementations

The data tier is simply a repository for persistent data. There are many ways that data can be persisted:
. OS File Systems

. Hierarchical Databases

. Object-oriented Databases

. Niche Databases

. Native XML Databases

. Relational Databases

Commercial off-the-shelf (COTS) database management systems (DBMS) are mature technical products, the capabilities
of which are being continually expanded to adapt to and accommodate new technologies.

Applicegian
Parsistani
Repasitories

11073

Guidance

¢ (G1132: Implement the data tier using commercial off-the-shelf (COTS) relational database management
system (RDBMS) products that implement the SQL standard.

Page 95

Part 5: Developer Guidance
Part 5: Developer Guidance > Data Tier > Database Development

P1013: Database Development

The end products of data modeling can be XML schemas or RDBMS schema definitions. See the Data Modeling
perspective. The following guidance applies to the data modeling in support of the data tier.

Guidance

« G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

e G1147: Use domain analysis to define the constraints on input data validation.
e (G1148: Normalize data models.

e (G1141: Use standard data models developed by Communities of Interest (COI) as the basis of program or
project data models.

« (G1151: Define declarative foreign keys for all relationships between tables to enforce referential integrity.
Best Practices

« BP1256: Use surrogate keys as the primary key.

< BP1143: Use a database modeling tool that supports a two-level model (Conceptual/Logical and Physical) and
ISO-11179 data exchange standards.

e BP1254: For command-and-control systems, use the names defined in the C2IEDM for data exposed to the
outside communities.

Page 96

Part 5: Developer Guidance
Part 5: Developer Guidance > Data Tier > RDBMS Internals

P1063: RDBMS Internals

An RDBMS is a collection of data items organized as a set of formally-described tables. This permits accessing and
reassembling data in many different ways without having to reorganize the database tables. It is important to ensure data
guality and to access data quickly, using simple, easily understood dynamic queries. Towards these ends, an RDBMS
offers such services as triggers, stored procedures, indices, constraints, referential integrity, efficient storage, and
high availability features.

11074

Guidance

e (G1146: Include information in the data model necessary to generate a data dictionary.

G1153: Separate application, presentation, and data tiers.
« (G1155: Use triggers to enforce referential or data integrity, not to perform complex business logic.
e (G1151: Define declarative foreign keys for all relationships between tables to enforce referential integrity.

e« (G1154: Use stored procedures for operations that are focused on the insertion and maintenance of data.

Best Practices
e BP1248: Follow a haming convention.

« BP1249: Do not use generic names for database objects such as databases, schema, users, tables, views, or
indices.

« BP1250: Use case-insensitive names for database objects such as databases, schema, users, tables, views, and
indices.

e« BP1251: Separate words with underscores.
¢ BP1252: Do not use names with more than 30 characters.

« BP1253: Do not use the SQL:1999 or SQL:2003 reserved words as nhames for database objects such as
databases, schema, users, tables, views, or indices.

« BP1256: Use surrogate keys as the primary key.
< BP1257: Place a unique key constraint on the natural key fields.

« BP1260: Define a primary key for all tables.
Page 97

BP1261:

Part 5: Developer Guidance
Monitor and tune indexes according to the response time during normal operations in the production

environment.

BP1262:

In the case of Oracle, define indexes against the foreign keys (FK) columns to avoid contention and

locking issues.

BP1263:

BP1264:

BP1254:

Gather storage requirements in the planning phase, and then allocate twice the estimated storage space.
For high availability, use hardware solutions when geographic proximity permits.

For command-and-control systems, use the names defined in the C2IEDM for data exposed to the

outside communities.

BP1258:

BP1255:

BP1259:

BP1140:

BP1139:

BP1143:

Explicitly define the encoding style of all data transferred via XML.
Use surrogate keys.

Use indexes.

Use SQL-2003 features in preference to SQL-92 or SQL-99.

Do not use proprietary SQL extensions.

Use a database modeling tool that supports a two-level model (Conceptual/Logical and Physical) and

ISO-11179 data exchange standards.

BP1145:

BP1227:

Use vendor-neutral conceptual/logical models.

Do not allow installation of MSMQ-dependent clients.

Page 98

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts

P1059: Overarching Concepts

This section of NESI guidance includes the following complex perspectives:
. Data
. Application Security

. Programming Languages

Page 99

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data

P1012: Data

There are several common definitions of data; the NESI Glossary definition includes the following points:
. Data is unprocessed information.
. Data is information without context.

But both of these definitions rely on the term "information" which can be a circular definition back to data. To clarify this,
the following model helps create definitions of Information, Knowledge and Wisdom. Data flows into the system as a
set of zeros and ones. The system transforms this initial data into other data that is more understandable from a human
perspective (i.e., a list of double precision, floating point numbers). If the numbers are placed into a context such as itis a
geographic position, then the data starts to become Information. As information is combined together, the result is referred
to as Knowledge (i.e., the knowledge of where one is). When the knowledge can support making decisions, the results are
Wisdom (i.e., how to get from point A to point B).

Data %

01101011 . H-I 103.2% 24.45% 103 .25 24,46 . |
I | GeoPosition
XML
Information 4
g tions-
Aong>103, 2% Flomg:-
“Lat>24. 4% flat >
< Fpeoprosi i am =
= i Lions
Enowledge <oy #1003, 25 Flong >
Wisdom qmq'“)ﬁ_i:;n*j
A " I
I know how to get L, i
from where [am, e sy B St Tt Cornae >
to Old Town! S e ﬁp “long>103. 00 flong >

“Lat>2% . 00 f Lat >
i Syedions TR e
Er N

P R

B e)

1112

Within NESI, the term Data covers the entire data spectrum (i.e., Information, Knowledge and Wisdom) with a focus is

on the transfer of data between components. There have been several major efforts within the DoD that have addressed
the need to understand, control and document the flow of data between components. NESI is not in competition with
these efforts nor is it intended to render these efforts obsolete. NESI provides detailed guidance intended to verify that the
concepts and tenets of these efforts are met.

Generic data guidance statements include guidelines relative to basic functions associated with the definition of data and
the most general categories of data types. Examples of the most basic data functions include data modeling and domain
analysis. The most general categories of data types include relational database data and XML.

Data Exposure defines the steps necessary to set up the metadata infrastructure associated with a net-centric
data strategy. This infrastructure permits the exposure (i.e., visibility) of net-centric data to the user community. This
infrastructure will be set up once but maintained to include the following:

. Registry where the metadata will reside

. Repository where the data will reside

. Rules applicable to the tagging of data

Page 100

Part 5: Developer Guidance

Tagging and metadata rules follow from Data Categorization. Generic Data Categorization includes data types that
adhere to XML Schema rules. Specialty Data Categories, such as Electronic Data Interchange (EDI) and Binary XML
include data types that do not fit in the current XML paradigm but for which special XML extensions may be developed.
Data Publishing defines the steps necessary to make data available within the net-centric data strategy infrastructure.
It requires the project to have a Community of Interest (COIl), a model of the data associated with the project and an

ontology which taken together can be used as a basis for structural metadata. Based on the Data Categorization rules
promulgated in the data exposure section appropriate tags are determined and applied to the data

Detailed Perspectives
. XML
. Metadata Registry
. Data Modeling

. Metadata

Page 101

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > XML

P1083: XML

The Extensible Markup Language (XML) is a World Wide Web Consortium (W3C) initiative that allows encoding

data and information with meaningful structure and semantics into a document that computers and humans can read
easily. XML is ideal for information exchange and is easily extended to include other data types. The ubiquitous nature

of XML within existing and proposed DoD projects has spawned a lot of activity to capture guidelines and requirements
that facilitate net-centricity and interoperability. Many of these activities have not been finalized and are "emerging"” from a
NESI viewpoint. This NESI Perspective leverages the work done by Roger Costello and colleagues at xFront.com. It is by
no means complete, but it does provide a starting point for additional DoD XML work.

There are two key measures of XML instance document correctness: being well-formed and valid. Those concepts and
others are introduced in the following perspectives:

. XML Syntax
. XML Semantics

. XML Processing

Page 102

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Syntax

P1095: XML Syntax

The syntax of an XML document is a hierarchical collection of XML elements that identify the name of the data within
the XML document and the value associated with the element. Elements can have attributes and be nested within other
elements. The following is a simplistic XML document displayed in ASCII with the major syntactical components labeled.

Element Element Attribute Attribute Attribute
Begin Mame Name Walue List

Guidance

e G1724: Develop XML documents to be well formed.

Best Practices

« BP1258: Explicitly define the encoding style of all data transferred via XML.

e BP1752: Place dynamic XML element data within an XML CDATA section.

Examples

An example of an XML instance document is the following weather information XML. It can be thought of as a complex
data structure that contains a weather station's data.

Page 103

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics

P1096: XML Semantics

The semantics of an XML document are limited to the structural composition of data, the relationships of the structures to
each other, and the rules governing data content. A full semantic interpretation of the XML content must be left to humans
or tools that humans have written that connote some meaning to the data. For example, the semantics captured by XML
might define a weather station that is comprised of air temperature, soil temperature, anemometer and hygrometer and
the values and units associated with these values. XML does not capture what this data means semantically to a pilot or
soldier.

XML Schema Document

Blue Prints

1

XML Instance Document

S
N

11174

The semantics of any XML instance document are captured in another XML document called the schema which is also
defined using XML. Therefore, the semantics discussion is divided into two sub-perspectives:

. XML Schema Documents

. XML Instance Documents

Page 104

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Instance Documents

P1104: XML Instance Documents

An XML instance document is an XML document which is defined by an XML Schema but is populated with the actual
data whereas the schema is the definition of the structure and semantics of data (metadata).

Guidance

e« G1725: Develop XML documents to be valid XML.

e G1736: Separate document schema definition and document instance into separate documents.
Best Practices

e BP1742: Use the xsi qualifying prefix for XML Schema instance hamespace uses.

« BP1743: Use .xml as the file extension for files that contain XML Instance Documents.

Page 105

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema Documents

P1097: XML Schema Documents

An XML Schema is a W3C specification for defining the semantics and structure of XML documents. For a discussion
of the grammar that governs XML see the XML Syntax perspective. The semantics are limited to the structural
composition of data, the relationships of the structures to each other, and the rules governing data content. The
discussions of the schema documents are broken down into schema subject areas:

. Defining XML Schemas

. XML Schema Files

. Using XML Namespaces

. Defining XML Types

. Using XML Substitution Groups

. Versioning XML Schemas

Page 106

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema Documents >
Defining XML Types

P1101: Defining XML Types

The W3C defined datatype as follows:

"A datatype is a 3-tuple, consisting of a) a set of distinct values, called its value space, b) a set of lexical representations,
called its lexical space, and c) a set of facets that characterize properties of the value space, individual values or lexical
items."

[See W3C "XML Schema Part 2: Datatypes Second Edition," Section 2.1, http://www.w3.0rg/TR/xmlschema-2/
#typesystem]

There are two kinds of datatypes definable within XML: Primitive and Derived. Primitive datatypes are not defined in terms
of other datatypes while Derived datatypes are defined in terms of other datatypes. All datatypes can be further classified
as Built-in and User-derived. Built-in datatypes are those which have been defined by the W3C in XML Schema Part 2:
Datatypes Second Edition. User-derived datatypes are those defined by individual schema designers.

The guidance included in this perspective is for primitive and derived datatypes designed by individual schema designers.
Guidance

e G1727: Provide names for XML type definitions.

e (G1728: Define types for all XML elements.

e G1729: Annotate XML type definitions.

e G1740: Append the suffix Type to XML type names.
Best Practices

e« BP1732: Follow the Upper Camel Case (UCC) naming convention for XML Type names.

Page 107

http://www.w3.org/TR/xmlschema-2/#typesystem
http://www.w3.org/TR/xmlschema-2/#typesystem
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema Documents > XML
Schema Files

P1099: XML Schema Files

Schema definitions are usually captured in files. The following guidance applies to those files which actually contain the
schema definitions.

Guidance
e (G1735: Use the . xsd file extension for files that contain XML Schema definitions.

e« (G1736: Separate document schema definition and document instance into separate documents.

Examples

<?xm version="1.0"?>
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
t ar get Namespace="htt p: // ww. caner a. or g"
xm ns: ni kon="http://ww. ni kon. cont
xm ns: ol ympus="http://ww. ol ynpus. cont
xm ns: pentax="http://ww. pent ax. cont
el ement For nDef aul t =" unqual i fi ed" >
<xsd: i nmport nanmespace="http://ww. ni kon. cont'/>
<xsd: i nmport nanmespace="http://ww. ol ynpus. cont'/ >
<xsd: i nmport nanmespace="http://ww. pentax.cont'/>
<xsd: el ement nane="Canera">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="body"
type="ni kon: BodyType"/ >
<xsd: el enent nane="| ens"
type="ol ynpus: LensType"/ >
<xsd: el enent nane="Manual Adapt er"
t ype="pent ax: manual _adapter _type"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: schena>

Page 108

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema Documents >
Using XML Namespaces

P1100: Using XML Namespaces

A namespace defines the scope for schema components and de-conflicts the use of schema components. Qualifying
prefixes simplify the use of namespaces in names by appending a qualifier onto the beginning of the name that is mapped
to a particular schema. Namespaces can become quite confusing if they are not used consistently.

Guidance
e G1737: Define a target namespace in schemas.
e (G1738: Define a qualified namespace for the target namespace.
e (G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.
e (G1383: Use aregistered namespace in the XML Gallery in the DoD Metadata Registry.

e (G1085: Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD
Programs.

e (G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.
Best Practices

« BP1739: Use the xsd qualifying prefix for XML Schema namespace.
« BP1741: Do not provide a schema location in import statements in schemas.

e BP1742: Use the xsi qualifying prefix for XML Schema instance hamespace uses.

Page 109

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema Documents >
Defining XML Schemas

P1098: Defining XML Schemas

While it is possible to use Document Type Definitions (DTD) to convey much of the same information as the XML
Schema Definition (XSD), XSDs have several distinct advantages which are very useful in terms of interoperability.
XML Schemas have richer support for defining and using types than DTDs which capture domain information such as
allowable ranges and units. For example, XSDs can define an elevation type with values limited to meters in the range of
0 to 12,000.

Guidance

G1725: Develop XML documents to be valid XML.

G1726: Define XML Schemas using XML Schema Definition (XSD).

G1730: Follow an XML coding standard for defining schemas.

G1045: Define XML format information separately in XSL.

Best Practices

e« BP1732: Follow the Upper Camel Case (UCC) naming convention for XML Type names.
e BP1733: Follow the Upper Camel Case (UCC) naming convention for XML element names.

e« BP1734: Follow the Lower Camel Case (LCC) naming convention for XML attributes.

Page 110

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema Documents >
Versioning XML Schemas

P1103: Versioning XML Schemas

XML Schemas capture the semantics of the data that the schemas define. As the understanding of the data and its
interrelationships evolves, the need to redefine the semantics captured by the schema is inevitable. This evolution can
have a wide ranging ripple effect throughout a large widely distributed system or family of systems. Therefore, the uniform
managing of schema versions is essential.

Guidance

e (G1753: Declare the XML schema version with an XML attribute in the root XML element of the schema
definition.

e G1754: Give each new XML schema version a unique URL.
e G1727: Provide names for XML type definitions.
e (G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.

e (G1019: Deprecate public interfaces in accordance with a published deprecation policy.

Page 111

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema Documents >
Using XML Substitution Groups

P1102: Using XML Substitution Groups

Substitution groups allow using elements defined in externally defined and controlled schemas as interchangeable
elements in new schemas. The members of the substitution group do not have to be derived from the same type. This
allows any of the element members' substitution group elements to participate as a member of a more abstract concept.
For example, in the following XML, Recor di ngMedi umis the name of the substitution group. The members of the group
are the Recor di ngMedi umelement itself and 35mm di sk and 3x5. Anywhere that Recor di ngMedi umis used as a
reference, 35mm di sk and 3x5 can also be used. For a complete example study the following diagram that defines a
Caner aMedi unBupport element that has a single sequence comprised of the Recor di ngMedi unGr oup substitution
group.

| Recording COI XSD
sl complewType \
="' R oo & ngdied L wnilype *
abstract="true">
!__I Recording COI Subgroup X8D
scomplexlype nane=" ¥5owil ype’ >
<aerd : comp LenCond-ent: >
<3eed : esrte ne om.
b =" Recordingedi wnTipe " =
Recording COI Subgroup XSD

Recnrd.mg COI Subgroup XSD
Aaed: complexT ype name=" skl pe">
- <mmd: compl esContent >

<mmd:entension
hase="r: Beooedt ngHediunlype >
B
< fumd: compl esContent -
b fremd: corplexType)

-

Camera COT X5D

Fraerd: elerent e "Feoood g e di uniz oo

abstract="true "

type="r: Becordingted wnTypea " f
Mote: The Camers 001 can [e larmnt

daﬂn mummee=* I
REP oo KoL thed Fm - i paar e e 'vxﬂ:whr _“ww.;r

z T | e R aﬂnw e

L | Frmnaebeanaet R b

N E Mrﬂ-'ﬂi-'ﬂﬁ‘ o 7 £

it
i
H
S
o
1

h'bu'.::i.“_'mi-t!ﬂm.g: "R Tar s e g
e "o T Ty

¢ il
il
[t
il
%;

{:n-é m:ﬂ—“hcmmﬂmm*f} ,
- et RO
E - B P T
X feal; el oyt ; ; - i

11175

Guidance

e« G1731: Only reference XML elements defined by a Type in substitution groups.
e G1744: Only reference abstract XML elements in substitution groups.

e G1745: Append the suffix Group to substitution group XML element names.

Page 112

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Processing

P1105: XML Processing

One of the primary benefits of using XML is that it can be read by humans or processed by software. The following
perspectives pertain to XML processing:

. XSLT
. XPath
. Parsing XML

. XML Validation

Page 113

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Processing > XSLT

P1106: XSLT

XSL Transformations (XSLT) allow XML data transformation using the functional eXtensible Stylesheet Language
(XSL).

XSL is dependent on XML Path Language (XPath) to address nodes within the input document. For XPath guidance
and best practices see the XPath perspective. The following example produces HTML image tag from an image XML
element with optional height and width attributes.

~Image
Height ="100">
newi i f
< fInincpe >

<aesl:btemplate matche="TImsge ">

<=l celoment nane="ing® >
<usl: attribute name="src">
Fimagesf<xsl walue-of select=", ">
<3l atteibute -
“usl;if test="EWAdth" >
“aml: attribut e mame—"width" >
“yml:valwe-of select="["Hdth"f>
<l at tedbute -
“fal i >
aElcif test="AHeight” >
ol atbribute mames"Tedght ">
<3l s wal we-of uﬂ.cct-"ElE:i.ﬂ'l.t-"ﬁ'
< faem] kb ik >
<l ciE>
< faml -element >
< fmpan
< faeml - templ at o>

<img sro=fimage s nesd gl £ hedghte 1000

11177

Templates

Use templates to transform particular sections of an XML document tree. XSLT requires at least one template
which matches to an absolute path of an element (e.g., /). Inside of a template, match other templates by
using xsl : appl y-t enpl at es. Passing an XPath query to the select parameter of xsl : appl y-t enpl at es
constructs a list of nodes by which templates are compared and executed.

XSLT 2.0

XSLT 2.0 improves on XSLT 1.0 and adds functionality that was previously only achieved through proprietary
language extensions.

Some of the more significant improvements include the following:
. Backwards-compatibility

Page 114

Part 5: Developer Guidance
. Improved XPath functions

. Regular expressions

. Schema validation to temporal and result trees
. Multiple outputs

. Aggregation

. Strong data typing

Guidance

e G1746: Develop XSLT stylesheets that are XSLT version agnostic.
e G1751: Document all XSLT code.

e G1755: Use accepted file extensions for all files that contain XSL code.

Best Practices

BP1747: Use the xsl qualifying prefix for XSLT namespace.

BP1748: Separate static content from transformational logic in XSLTs.

e BP1749: Use xsl:include for including XSL transforms.

BP1750: Use xsl:import for reusing XSL code.

Page 115

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Processing > XPath

P1107: XPath

A valid XML Document is a representation of a Document Object Model (DOM) tree structure. Each of the XML
elements is considered a node with the tree. XML Path Language (XPath) is a succinct and elegant way of addressing
the individual nodes (i.e., elements) within the tree (i.e., document) or to perform basic computations on the Element Data
within the document. The following is a very simplistic example of how an XML Document and XPath work together. The
XML instance document contains the data and the XPath provides the instructions on how to traverse the document.

Page 116

http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/default.asp

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Processing > Parsing XML

P1109: Parsing XML

One advantage of XML is that a variety of standard parsers are available to parse documents. Another advantage is that
the consumer of the XML document is free to choose the type of parser to use.

A couple of common types of XML parsers include the Document Object Model (DOM) and Simple API for XML (SAX)
parsers. The DOM parser uses a tree-based approach, while the SAX parsers use an event-based approach. Both
approaches have advantages and disadvantages depending the application.

In addition to the various types of XML parsers, there are multiple implementations of each types of parser. This provides
the developer great flexibility in choosing an XML parser implementation. To take advantage of this flexibility, the
developer must take care when developing software to allow for changing the XML parser throughout the life-cycle of

the software. One way to do this is to provide a wrapper or adapter class that isolates the XML parser implementation
allowing for changes to the XML parser during development or deployment.

Best Practices

« BP1769: Provide wrapper or adapter classes to isolate XML parser implementations.

Page 117

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Processing > XML Validation

P1110: XML Validation

One advantage of XML is that it allows for validation of XML instance documents. Validation can occur at the producer
and/or consumer or anywhere in-between.

Guidance
e« G1725: Develop XML documents to be valid XML.
Best Practices

« BP1265: Validate XML idocuments during document generation.

Page 118

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > Metadata Registry

P1050: Metadata Registry

A Metadata Registry is a central repository for storing and maintaining metadata definitions. A Metadata registry typically
has the following characteristics:

. It is a protected area where only approved individuals may make changes
. It stores data elements that include both semantics and representations
. The semantic areas of a metadata registry contain the meaning of a Data Element with precise definitions

. The representational areas define how the data is represented in a specific format such as within a database or a
structure file format such as XML

Metadata Registries often are stored in an international format called ISO-11179.
A Metadata Registry is frequently set up and administered by an organization's Data architect or data modeling team.

The DoD Metadata Registry provides a common source of data information required to promote interoperability in the
Net-Centric Data Environment.

"Defense Information Systems Agency (DISA) is responsible for data services and other data-related infrastructures
that promote interoperability and software reuse in the secure, reliable, and networked environment planned for the
DoD's Global Information Grid (GIG). The Metadata Registry and Clearinghouse's primary objective is to provide
software developers access to data technologies to support DoD mission applications. Through the Metadata Registry
and Clearinghouse, software developers can access registered XML data and metadata components, COE database
segments, and reference data tables and related meta-data information such as Country Code and US State Code.
These data technologies increase the DoD's core capabilities by integrating common data, packaging database servers,
implementing transformation media and using Enterprise data services built from "plug-and-play" components and data
access components.”

[http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal]

In the Net-Centric Data Strategy, data sources are called Data Assets which are divided into two generic areas:

The data area includes the following:
. XML stored in repositories (files)
. Database data
. Data services
. Data streams (real time)
. Sensor data
. Message data (includes EDI)
The metadata area includes the following:
. Metadata Stored in Registries

. uDDI

. ebXML

. DoD Metadata Registry

Page 119

http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal

Part 5: Developer Guidance
. Other ISO/IEC 11179 Registries

. Discovery metadata stored in Catalogs
. DoD Discovery Metadata Standard (DDMS)
. Interface Metadata (WSDL)
. Structural Metadata (XSD)

Data comes in many forms. It can be simple or complex; structured or unstructured in nature.

Simple Structured Data has an uncomplicated data structure . All requisite metadata is provided and simple data types
only are used (e.g., integers, long integers, strings, and simple lists).

Simple Unstructured Data has uncomplicated data structure but not all requisite Metadata is provided.
Complex Structured Data has well-defined metadata. It includes data represented in XML documents with deeply
hierarchical and recursive structures. Complex data can be represented in a complex data structure or can be mapped
into a relational or flat structure with additional metadata provided to represent the complex relationships. Although
Complex structured data is generically a property of object oriented databases, the Complex Data Structures can be filled
from any source.
. Data
. XML files
. defined by XML Schemas (XSDs)
. Interface
. Metadata stored in DoD Repository
. XML Schemas (XSDs)
. Discovery metadata
. WSDL
. UDDI
. Web Service Source Code
. XSDs include element validation and descriptions
. XSDs may import other XSDs

. XSDs are validated

. Complex Structured Data follows all of the XML rules.
Note: The source of this data can be any.

Complex Semi-Structured Data has partial metadata. It includes data defined in COBOL copybooks and Electronic Data
Interchange standards ANSI X.12 and Health Level 7 (HL7). Semi-structured data can be as complex or more so as any
Complex Structured data. It can map into or be XML. It may also be missing some Metadata or an XSD.

Page 120

Part 5: Developer Guidance

Complex Unstructured Data has little or no metadata. It includes data in binary files, spreadsheets, documents, and
print streams.

Guidance

G1382: Be associated with one or more Communities of Interest (COIs).

G1383: Use aregistered namespace in the XML Gallery in the DoD Metadata Registry.

G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.
G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

G1387: Identify data elements created during Program development for registering in the Data Element Gallery
of the DoD MetaData Registry.

G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

G1390: Standardize on the terminology published by relevant Communities of Interest (COIs) listed in the
Taxonomy Gallery of the DoD Metadata Registry.

G1391: Identify taxonomy additions or changes in conjunction with the Communities of Interest (COIs) during
the Program development for potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

G1125: Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.

Best Practices

BP1404: For DoD Programs requiring a data model, the NATO Generic Hub v.5 model (LC2IEDM) is an example
of a successful COI-developed model.

BP1392: Register services in accordance with a documented service registration plan.

Page 121

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Data > Data Modeling

P1003: Data Modeling

Modeling is an essential step in understanding the data that will comprise a system. Before implementing a system, it
is important to understand the basic data elements and the relationships of the elements. The end products of data
modeling can be XML schemas, RDBMS schema definitions or the data portion of objects.

Entity A Entity B
X Integer Q Integer
e Diouble W Double
& Baoclean E Boaolean
D Trate E Date
i) String T String
Entity C
D Integer
E Double
F EBaoolean
£} Date
H Shring
11115

The following guidance applies to the data model used to describe the data tier.

Guidance

G1141: Use standard data models developed by Communities of Interest (COI) as the basis of program or
project data models.

G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

G1147: Use domain analysis to define the constraints on input data validation.

G1148: Normalize data models.

Best Practices

BP1394: Identify, publish and validate data objects exposed to the enterprise early in the data engineering
process and update in a spiral fashion as system development proceeds.

BP1397: For new systems, identify and develop use cases or reuse existing use cases as appropriate as early in
the data engineering process as possible to support data model development.

BP1398: Develop Interaction models as appropriate.

BP1400: Programs will use authoritative metadata established by the Joint Mission Threads (JMTs) when
available.

BP1145: Use vendor-neutral conceptual/logical models.

BP1396: Develop high-level conceptual data models for new systems prior to Milestone A based on the business
process context in which the system will be used.

Page 122

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Data > Metadata

P1049: Metadata

Services and data to be mediated should always be formally defined, and typically this is done with some form of
computer readable metadata.

NESI currently requires metadata, defined primarily as XML Schema and Web Services Description Language
(WSDL) documents, be registered in the DoD Metadata Registry. NESI further specifies rules system developers must
follow in developing XML Schema, including the requirement to search the registry for existing schemas that can be
reused, aligning new schemas as closely as possible to existing similar schemas, reviewing schemas with the DoD XML
Namespace Manager, and looking for other relevant Government and industry schemas that could be leveraged. The
purpose is to avoid unnecessary duplication of effort and improve the success of future interoperability through common
definitions.

Challenges with Centralized Management of Metadata

The NCES Data Strategy team, including the maintainers of the DoD Metadata Registry, strives to create a
common data model, per Community of Interest (COI); but recognizing the difficulty in accomplishing that goal
the team promotes the use of "mediation” from one schema to another. NCES currently implements mediation
simply through the use of eXtensible Style Language Transformations (XSLT) to transform XML documents from
one schema to another.

This focus on centrally managed data models is not viable as a long term solution to mediation since it requires
substantial effort to define accurate transformations, and the underlying "business objects" almost always

lose information in the process. The vision of a non-redundant object model is considered by most experts as
unachievable due to social and communications barriers among the hundreds of organizations working as part of
or with the Federal Government and the DoD in particular.

Accepting the fact that use of the DoD Metadata Registry is a requirement gives rise to posing the question
should there be a new FORCEnet COIl "namespace," or should the FORCEnet activities simply try to find suitable
existing namespaces in which to register their metadata. Clearly, some FORCEnet applications will be able to
leverage some of the existing schemas. But are there a significant number of new schemas to be registered, and
if so can they be aligned to existing COIl namespaces or will there be unacceptable barriers to introducing the
changes required.

Moreover, the technologies for application and system development continue to improve to allow more rapid
turnaround of new software capabilities, and in fact software developers are finding less of a need to work at the
XML document level at all. Model Driven Architecture (MDA) technology, for example, is becoming mainstream,
and interfaces are being developed visually, with the schemas automatically generated according to the graphical
model. The creation of interfaces and schemas is becoming more of a dynamic activity, and the projected ad

hoc interoperability of loosely coupled components, enforced by the FORCEnet vision, will mean bureaucratic
processes such as those introduced by the DoD Metadata Registry may introduce significant risk.

Advancing Mediation with Semantic Descriptions

Striving to minimize the number of schema variations by leveraging common schemas across applications

is laudable and should be encouraged. However, more advanced solutions to mediation are critical to the
interoperability problem where common schemas do not exist. This may require a more dynamic process for
registering metadata, without restrictions. An argument can be made for a FORCEnet COl in this regard.

As promoted by the NCES Data Strategy team, XSLT is the common practice for mediation. However, XSLT
only solves a single point-to-point integration, and it is limited in its ability to support semantic validation. The
Business Process Execution Language (BPEL) is an emerging specification (likely to become a standard)
for defining specific interactions among services using documents defined through schema. It can use XSLT
and other technologies to perform transformation of data elements, and semantics are implicit through their use.
However, each BPEL definition is limited even further to a single use-case for the data.

Page 123

Best

Part 5: Developer Guidance

In order to reduce the work and the errors associated with mediation, we need to take the concept to the next
logical step. Documents and services should include metadata that encodes their semantic intent. Technologies
are emerging, such as the Web Ontology Language (OWL) [http://w3.0rg/], that assist in defining the semantic
relationships and constraints in schemas.

These definitions can be used to automate the transformations between applications and services, to validate
the transformations, and to support much more intelligent human-computer interaction. For example, a PEO
C4l and Space sponsored program developed the Service Mediation Description specification for the DISA Net-
Centric Capabilities Pilot. This metadata document automatically generated user interfaces (input forms, data
result tables, and map overlays) from semantically-described Web services and schemas, using a document
format#derived from BPEL and other Web standards.

Practices

BP1408: Use a semantic description language such as Web Ontology Language (OWL) or Resource
Definition Framework (RDF) to represent an Ontology.

BP1409: Register Web services using Web Services Description Language (WSDL) and Universal
Description, Discovery, and Integration (UDDI).

BP1865: Provide sufficient program, project, or initiative metadata descriptions and automated support to enable
mediation and translation of the data between interfaces.

Page 124

http://w3.org/

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security

P1065: Security

In the post-9/11 period, security has taken top priority in the nation's agenda. The terrorist has made America painfully
aware of the consequences of inadequate security. As a result, billions of dollars along with numerous resources have
been allocated to homeland security. It is more critical than ever to establish security guidelines for new and evolving
Military applications.

In general, there are two security aspects to consider for any application. The obvious one is the application itself;

the other is security of the application deployment platform. NESI guidance focuses on the former as it would be a
monumental (if not impossible) task to cover security for the various operating systems, application servers, database
servers, etc., in use today.

Security is an enormous topic and one that is pervasive throughout all application models. Even though it would be
convenient to have a single document that covers all security concerns, it simply is not possible. Security is an evolving
process that should evolve with the application lifecycle. The approach of this document is first to cover general security
guidance that will be applicable to all application types. After covering the general security guidance, this document will
cover guidance that is specific to an application type. The coverage will be one of increasing application scale, starting
with desktop applications and finishing with a look at how future net-centric application will integrate and interoperate with
the DoD ldentity Management Framework.

NESI application security guidance is applicable to applications at any stage of the development lifecycle. However,

even if a software application adheres to all recommended guidance, there are no guarantees that the application will be
secure. At best security is a moving target and an evolving process. In fact, a cottage industry of software applications
grew out of the fact that software can not be trusted. As grim as it sounds, it does not mean that secure software is
unachievable. Software can be designed and developed in such a way that it would be virtually impossible for attackers
using current day resources. Following and applying NESI-recommended guidelines can be a good first step toward
securing an application. Perfirming software compliance reviews throughout the lifecycle of a software application helps to
insure software integrity.

The following diagram represents how secruity implementation at all levels supports application security in a net-centric,
interoperable implementation environment:

. Desktop Computing

. Network Computing

. Enterprise Computing

. Service-Oriented Architecture

. General Application Security

Page 125

http://nesipublic.spawar.navy.mil/nesix/View/P1304

Part 5: Developer Guidance

11075

Page 126

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > General Application Security

P1029: General Application Security

This perspective addresses high level guidance relevant to all application types and includes critical and common
security infrastructure components. Related perspectives address application-specific guidance in terms of the
Desktop/Network/Enterprise/Service-Oriented Architecture model illustrated in the diagram included in this perspective.

Note: A NESI Service-Oriented Architecture Perspective with related Guidance and Best Practices is under
development.

Some of the guidance in this perspective may not appear to be directly related to security; however, this guidance is
important in ensuring the quality of code to prevent attackers from taking advantage of coding mistakes. Keep in mind
there are no silver bullets with software security; scrutinize and test all aspects of an application to ensure the user and
the application are protected.

11077

Security infrastructures are fundamental building blocks that are common for all applications. The technologies in the
Detailed Perspective list below have evolved into industry standards. Although no technology can be considered 100%
secure, these technologies can provide a layer of protection that contribute to the overall security of the application.

Detailed Perspectives
. Public Key Infrastructure (PKI) and PK Enable Applications
. Key Management
. Encryption Services
. Certificate Processing

. Security Assertion Markup Language (SAML)
Guidance

e (G1300: Secure all endpoints.

* (G1301: Practice layered security.
Page 127

Part 5: Developer Guidance
G1302: Validate all inputs.

G1304: Unit test all code.
G1305: Ensure the separation of encrypted and unencrypted information.
G1306: Identify and authenticate users of the application.

G1307: Provide a security policy file.

Page 128

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > General Application Security > Public Key Infrastructure
(PKI) and PK Enable Applications

P1061: Public Key Infrastructure (PKI) and PK Enable Applications

More and more secure client/server applications are appearing on the market. Applications today are relying heavily on
Digital Signature technology to certify messages received were indeed sent by the sender. Both of these technologies
use Public Key encryption, which is currently the only feasible way of implementing security over an insecure network
such as the NIPRNet. Public Key encryption ensures that any form of communication that many contain sensitive
information (i.e., passwords, credit card numbers) is protected while in transit and provides assurance to the receiver that
the message was really sent by the sender. In the case of Web-based technologies, this is accomplished with a server
that implements encryption at the communications level. The de facto standard for communication based encryption is
the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols. The infrastructure used to support
communication-based encryption is PKI which is composed of a number of cryptographic technologies but provides for
two key services, data integrity and confidentiality. Public Key systems involve a Certificate Authority (CA) responsible
for issuing a pair of digital certificates: one public and one private. The public key, as its name suggests, may be freely
disseminated. This key does not need to be kept confidential. The Private Key, on the other hand, must be kept secret.
The owner of the key pair must guard the private key closely, as sender authenticity and non-repudiation are based on the
signer having sole access to the private key. There are several important characteristics of these key pairs. First, while
they are mathematically related to each other, it is impossible to calculate one key from the other. Therefore, the private
key cannot be compromised through knowledge of the associated public key. Second, each key in the key pair performs
the inverse function of the other. What one key does, only the other can undo.

The CA is a trusted third party that issues digital certificates to its subscribers, binding their identities to the key pairs they
use to sign electronic communications digitally. Digital certificates contain the name of the subscriber, the subscriber's
public key, the digital signature of the issuing CA, the issuing CA's public key, and other pertinent information about the
subscriber and the subscriber's organization. The CA can revoke certificates upon private key compromise, separation
from an organization, etc. These certificates are stored in an on-line, publicly accessible repository. The repository,
referred to as Certificate Revocation List (CRL), also maintains an up-to-date listing of all revoked but not yet expired
certificates.

For the DoD PKI, users interface with the Real Time Automated Personnel Identification System (RAPIDS)
workstation via the Issuance Portal for digital certificates residing on the Common Access Card (CAC).

To guarantee that data stays confidential and secure from attackers listening on the network in promiscuous mode (i.e.,
network sniffers) and to provide better performance, Symmetric Encryption (secret key) is used to encrypt and decrypt
the data. Asymmetric Encryption (public key#private key) is not used for all encryption because it is too expensive

for high volume data. For SSL and TLS, Asymmetric Encryption is used initially to pass the secret key (often called the
session key). Once the secret key has been established on both sides, all subsequent data communications can be
performed using Symmetric Encryption.

There are at least two options when an application needs to support PKI/SSL: use a DoD-approved module or develop
the application abiding by the DoD Class 3 Public Key Infrastructure Interface Specification. The guidance linked to
this perspective applies to Public Key Enabled applications wanting to operate within the DoD PKI.

Guidance

e (G1308: Configure Public Key Enabled applications to use a Federal Information Processing Standard (FIPS)
140-2 certified cryptographic module.

e (G1309: Make applications handling high value unclassified information in Minimally Protected environments
Public Key Enabled to interoperate with DoD High Assurance .

e (G1310: Protect application cryptographic objects and functions from tampering.

e« G1311: Use Hypertext Transfer Protocol over Secure Socket Layer (HTTPS) when applications communicate
with DoD Public Key Infrastructure (PKI) components.

e (G1312: Make applications capable of being configured for use with DoD PKI.

e (G1313: Provide documentation for application configuration and setup for use with DoD PKI.
Page 129

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > General Application Security > Key Management

P1041: Key Management

The key enabler in the PKE applications is Asymmetric Encryption, the use of public and private keys. It is used
in exchanging session keys, and it is used to verify Certificates therefore, it is critical for applications to manage and
protect the keys used in PKI. This includes the associated technologies used to store the keys and Certificates. The
following list of guidance addresses key management issues.

Guidance
e G1314: Provide applications the ability to import and export keys (software certificates only).
e (G1315: For applications, use key pairs and Certificates created for individuals using DoD PKI methods and
procedures defined by the DoD Class 3 Public Key Infrastructure Interface Specification and the Personal
Information Exchange Syntax Standard.

e (G1316: Ensure that applications protect private keys.

e G1317: Ensure applications store Certificates for subscribers (the owner of the Public Key contained in the
Certificate) when used in the context of signed and/or encrypted email.

e (G1318: Develop applications such that they provide the capability to manage and store trust points (Certificate
Authority Public Key Certificates).

e (G1319: Ensure applications can recover data encrypted with legacy keys provided by the DoD PKI| Key Recovery
Manager (KRM).

Page 130

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > General Application Security > Encryption Services

P1020: Encryption Services

Successful implementation of Public Key enabled applications is predicated on the correct selection and use of security
algorithms. This section provides guidance on the use of encryption, digital signature, and authentication services in a
consistent manner to interoperate with DoD PKI.

Guidance

e G1320: Use a minimum of 128 bits for symmetric keys.

e« (G1321: Enable applications to be capable of performing Public Key operations necessary to verify signatures on
DoD PKI signed objects.

e G1322: Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of encrypting
and decrypting data using the Triple Data Encryption Algorithm (TDEA).

e G1323: Generate random symmetric encryption keys when using symmetric encryption.
e G1324: Protect symmetric keys for the life of their use.
e G1325: Encrypt symmetric keys when not in use.

e (G1326: Ensure applications are capable of producing Secure Hash Algorithm (SHA) digests of messages to
support verification of DoD PKI signed objects.

e« G1797: Use a minimum of 1024 bits for asymmetric keys.

Page 131

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > General Application Security > Certificate Processing

P1009: Certificate Processing

The DoD implementation of the Public Key Infrastructure (PKI) is the framework and services that provide for the
generation, distribution, control, tracking and destruction of Public Key Certificates. The purpose of a PKIl is to manage
keys and Certificates in a way whereby the DoD can maintain a trustworthy networking environment. Digital Certificates
are issued by a DoD Certificate Authority. It is an electronic document that contains a user's identity, a pubic key, a
validity period, and the issuing authority. It is digitally signed and the Certificate is chained hierarchically in a path that can
be traced to the Root Certificate.

s =
Root

Certification

Intermediate
Certification
End Entity

(Usex)

1091

Certificates can be sent via email or more commonly retrieved from repositories (Directory Server). Applications must
validate the Certificate by checking status of the Certificate. There are two forms of status checking, the legacy Certificate
Revocation List (CRL) or Online Certificate Status Protocol (OCSP). The status check determines whether a Certificate
is revoked. A Certificate can be revoked if the information in the Certificate may have changed (relocation, new email) or
the Certificate has been compromised. The Certificate validation is a critical part of the PKI process; it is the application's
responsibility to perform the status checks. The following guidance sets the guidelines for the Certificate processing.

- Restid .
DENYVER E Mburliy H CHAMBERSBURG
CA Sagrang Cerldicae Server A Sigung Certdicab
g E-
h‘?;h Certificaie Doy
Avathe ity Serer

11093

Guidance

e (G1327: Enable an application to obtain new Certificates for subscribers.

e (G1328: Enable an application to retrieve Certificates for use, including relying party operations.

Page 132

Part 5: Developer Guidance

G1330: Ensure applications are capable of checking the status of Certificates using a Certificate Revocation
List (CRL) if not able to use the Online Certificate Status Protocol (OCSP).

G1331: Ensure applications are able to check the status of a Certificate using the Online Certificate Status
Protocol (OCSP).

G1333: Only use a Certificate during the Certificate's validity range, as bounded by the Certificate's "Validity - Not
Before" and "Validity - Not After" date fields.

G1335: Make applications capable of being configured to operate only with PKI Certificate Authorities specifically
approved by the application's owner/managing entity.

G1338: Applications and Certificates need to be able to support multiple organizational units.

Page 133

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > General Application Security > Security Assertion
Markup Language (SAML)

P1189: Security Assertion Markup Language (SAML)

The Security Assertion Markup Language (SAML) is a vendor-neutral protocol specification for software applications
and services to exchange security information in a distributed network environment. The SAML specification, maintained
by the OASIS Security Services Technical Committee, defines schemas for how security assertions are structured and
embedded within transport protocols.

SAML defines three types of assertions for an individual or machine:

Authentication used for proving identity

Authorization used for controlling access

Attributes used to provide additional details to constrain the
request

Email address, employee number, and rank are examples of attribute assertions.

SAML does not define any implementation of the services that authenticate or authorize users. Commercial vendors
provide implementations in the form of authentication servers to authenticate and authorize users. Authentication servers
respond to SAML requests and return SAML assertions that ensure the subject is logged in and authorized to access the
resource.

Guidance

e G1379: Use SAML version 2.0 for representing security assertions.

e (G1380: Use the XACML 2.0 standard for SAML-based rule engines.

Page 134

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > Desktop Computing

P1018: Desktop Computing

Security is pervasive at all levels of computing. In the early days of computing, characterized by individual desktop
computers with single users, security concerns were minimal compared to modern day systems. The user's main
concerns were that the application did not crash and the data was safe. The Desktop Computing concept includes

high level guidance that apply to applications on a generic level. NESI guidance deals with language and development
issues such as protection of memory resources and protection of data (binary proprietary). This guidance also addresses
application planning (i.e., a security policy plan) and application testing as it relates to security.

1095

Desktop application security often does not get the attention that it should. First, most desktop applications are legacy
applications that often did not consider security as part of the design. Second, most desktop applications are not network-
based applications so security was not a primary concern. However, today's legacy applications quite often become
tomorrow's net-centric Web services. Therefore, it is very important to evaluate and address security concerns of desktop
applications not only during development but also in porting or migration efforts.

Detailed Perspectives

. API Security
. Java Security

. Application Resource Security

Page 135

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > Desktop Computing > API Security

P1004: API Security

At the very fundamental level, applications are composed of calls to various Application Programming Interfaces
(APIs) or component libraries. Develop APIs and component libraries with an ability to safeguard system resources
and application reliability. It is important secure APIs and component libraries because these are often reused in multiple
applications. A mistake in security could open up multiple applications to attacks. The guidance that follows provides
some general APl guidance that is independent of language or platform.

Guidance
¢ (G1339: Practice defensive programming by checking all method arguments.

e (G1340: Log all exceptional conditions.

Page 136

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > Desktop Computing > API Security > Java Security

P1038: Java Security

Java is an Object Oriented Language; applications benefit from the encapsulation features which offers protection for
application data. Java was also designed and built with security in mind. Some of the security features include restricting
direct access to memory (protecting data access privileges), array bounds checking (buffer overflow), and ability to install
a security manager to protect system resources. Despite all the security features built into the Java language, it does not
mean that Java APIs are immune to security problems. Take care in the design and implementation of APIs to prevent
attacks. The following security guidance are targeted to Java-specific APIs.

Guidance

« (G1341: Use a security manager support to restrict application access to privileged system resources.
e (G1342: Restrict direct access to class internal variables to functions or methods of the class itself.

e (G1343: Declare classes final to stop inheritance and prevent methods from being overridden.

Page 137

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > Desktop Computing > Application Resource Security

P1005: Application Resource Security

Applications use and store a large amount of data that often do not go into databases. For instance, an application

often uses configuration files for application configuration, preferences files for personalization information (custom user
experience) and resource files for internationalization support. Apply appropriate protection to sensitive resources to
prevent attackers from tampering. Application bundles, properties files, configuration files when tampered could cause the
user to execute inappropriate commands, expose sensitive data due to invalid configuration or cause the application to be
inoperable. Therefore, it is of utmost importance to take appropriate measures to protect these resources.

Guidance

« G1344: Encrypt sensitive data stored in configuration or resource files.

Page 138

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > Network Computing

P1053: Network Computing

As the migration from the desktop application model to a distributed application model (network) occurred,
Transmission Control Protocol/Internet Protocol (TCP/IP) won the "protocol wars" and eventually dominated the local
networked application space. The complexity of distributed architectures and an industry trend toward Object Oriented
Language led to the advancement of component-based architectures. The need for component architectures was
obvious because it was easier to divide a complex application into components and allow different teams of developers
to work on individual components in parallel. Another added benefit was code reuse. A key security question was

how to secure distributed components. In the early days, Applications typically created proprietary binary protocols for
packet level communication on the local area network (LAN); therefore, intimate knowledge about the protocol and
packet structure was needed to break into the system. However, this made it difficult to integrate systems because

of the differences in network byte ordering of data. To solve the heterogeneous network problem and simplify system
integration, a myriad of interface type network protocols such as Remote Procedure Calls (RPC), Common Object
Request Broker Architecture (CORBA), and Remote Method Invocation (RMI) were invented (early incarnations of a
service-oriented architecture or SOA). Each technology had its own merits and faults and none of these technologies
dominated the market. The security concerns at this point were securing communications and limiting access to network
data sources (database). The NESI Network Computing complex perspective encompasses the group of guidance

that supports secure communications typically done through the use of Secure Sockets Layer (SSL) and Public Key
Infrastructure (PKI) in a networked enterprise or SOA environment..

General (High Level) Security Guidance ““:'J “ﬂﬁ‘m
T W
Service Oriented Architee ture v@
Enterprise Computing

Network Computing

Computing

11096

Detailed Perspectives
. Enterprise Computing
. Java Naming and Directory Interface (JNDI)
. Data Tier Security

. XML Web Services

Page 139

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > Network Computing > Enterprise Computing

P1021: Enterprise Computing

Enterprise computing existed long before the emergence of the World Wide Web. The Web simply facilitated extending
the Enterprise to the World. The Web provided a ubiquitous protocol (HTTP) and interface for accessing network
resources. Securing an enterprise application, however, provides a number of challenges. First, by virtue of being

a Web application, it means the application must support multiple simultaneous users. Second, an enterprise Web
application usually consists of a number of moving parts (components) on multiple computers. For instance, a Web
application typically employs tier architecture (i.e., presentation, middle, and data) in which a complex group of servers
and components work together to generate a response to the user. Addressing the security concerns in the same order,
user management security requires guidance that assures the user's trust in the Web application and ensures protection
of the customer data. Public Key Infrastructure (PKI) Certificates authenticate the Servers and Users through a
Certificate Authority. HTTPS (HTTP over SSL) ensures encryption of communication data. Second, to address tier
application architecture security concerns requires looking at component security in each of the architecture tiers. For
the presentation tier, NESI guidance looks at security guidance in relations to user interaction (cross site scripting), form
data processing and validating input. For middle tier security guidance addresses declarative security through deployment
descriptors, JNDI, and programmatic security. Data tier security guidance involves securing user access to the relational
database management system (RDBMS). There is also guidance on the structured query language (SQL) protocol
that databases process and the API (i.e., JDBC or ODBC) that provides database-agnostic access to the data tier.

In general, component security within an enterprise presents less risk than components that are available outside the
enterprise.

Gemeral (High Level) Security Guidance Identity Managememnt
Framework
Sexvice Ovienied Archiies noe .-""@
Enterprise Computing

Network Computing

Deskinp
Computing

1097

Addressing security concerns from the standpoint of an evolving software application, software requirements and software
complexity will continue to grow. The complexities of today's enterprise software make it difficult to develop custom
monolithic applications. Today's enterprise application must support multiple users using the application concurrently.

It must be portable and interoperate with various standard and custom enterprise services through industry standard
interfaces. To meet that demands, most enterprise application will rely on an architecture that is flexible, reusable,
maintainable and interoperable. That application architecture model is the Tier Application architecture.

What is the Tier Application Architecture? Simply put, the Tiered Application Architecture takes an application and breaks
it up into functional units, so call Tiers. A Tier is defined as a piece of software that provides part of the functionality for a
complete application. The following diagram shows the general model of a three Tier application Architecture.

Page 140

Part 5: Developer Guidance

1098

Three Tier Application Model

Even though an Enterprise Application can compose of N-Tiers, NESI uses a general three tier model to address the
security concerns for the Enterprise application. The Presentation Tier is typically used to display the user interface and
the application data. The Middle Tier provides the application logic and how data should be validated and processed. The
Data Tier provides permanent store for the application data. The benefits of this model are interoperability, lower cost of
maintenance, and interchangeability. This section will address the security guidance in accordance to the generalized
three tier architecture. Starting from the Data Tier, to the Middle tier and finally to the Presentation Tier. The coverage

of each tier may involve more than one applicable technology or platform which will have additional perspective and
guidance specific to the topic.

Detailed Perspectives
. JNDI Security
. Data Tier Security
. RDBMS Security

. LDAP Security

Page 141

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > Network Computing > Enterprise Computing > JNDI
Security

P1039: JNDI Security

The Java Naming and Directory Interface (JNDI) is an API for directory services in a Java EE environment. It

allows clients to discover and look up data and objects using a name. JNDI is portable and independent of the actual
implementation. Additionally, it specifies a service provider interface (SPI) that allows plugging directory service
implementations into the framework. The JNDI service implementations are hidden from the user and may make use of a
server, a flat file, or a database. The choice is up to the JNDI provider.

Guidance

« (G1071: Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).
e G1079: Isolate tailorable data values into the deployment descriptors for Java EE applications.

« (G1239: Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of
vendor-dependent connections to the enterprise.

Best Practices

« BP1116: If using Java-based messaging (e.g., JMS), register destinations in Java Naming and Directory
Interface (JNDI) so message clients can use JNDI to look up these destinations.

Examples

/1 Step 1

/'l Create a hashtable that contains the paraneters

/] used to initialize JNDI .

Hasht abl e cont ext Parans = new Hasht abl e();

/] Step 2

/'l Specify the context factory to use. The context

// factory is provided by the

/1 inplenmentation.

cont ext Par ans. put (Context. | N Tl AL_CONTEXT_FACTORY, "com jni dprovi der. Cont ext Factory");
/] Step 3

/'l The next paraneter is the URL specifying the |ocation

/1 of the JNDI provider's data store

cont ext Par ans. put (Cont ext. PROVI DER_URL, "http://jndi provi der - dat abase") ;
/] Step 4

/] Create the JNDI provider's context.

Cont ext navyCurrent Context= new | nitial Context (contextParans);

/] Step 5

// Look up the desired bean using its full nane.

bj ect reference= navyCurrent Context.l ookup ("m|.us.navy. NavyBean");
/] Step 6

/] Cast the |ocated bean to the desired type.

MyBean navyBean= (NavyBean) Port abl eRenpteCbject.narrow (reference);

Page 142

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > Network Computing > Enterprise Computing > Data
Tier

P1016: Data Tier

11100

Tier Application Model

In general, applications use two mechanism for persistent storage of data: Relational Database Management System
(RDBMS) and Lightweight Directory Access Protocol (LDAP) server. Other more primitive and/or custom forms of
persistent store exists but are not included in this perspective. In practice, custom formats are not portable and therefore
not recommended; aspects of forms such as properties files and XML files are covered in other ares of NESI guidance
(i.e., Application Resource Security). The umbrella guidance G1381 exists to cover all custom formats and solutions.

Typically, applications are insulated from direct access to the database. Instead, industry standard abstract interfaces
provide backend data store access. The benefit of this approach is that it decouples the application from database specific
details and therefore allows interchangeable data store implementations. Security guidance for these standard APIs
(JDBC for RDBMS and JNDI for LDAP) are in the following perspectives.

Detailed Perspectives
. RDBMS Security
. LDAP Security
Guidance

e (G1381: Encrypt all sensitive persistent data.

Page 143

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > Network Computing > Enterprise Computing > Data
Tier > RDBMS Security

P1064: RDBMS Security

Relational Database Management Systems remain on top amidst emerging technologies such as XML and Object-
Oriented Database Management Systems. The continued dominance of relational databases is unlikely to change in
the near future. First, there is still a large amount of legacy data and legacy applications that rely on RDBMS. Second,
RDBMS are continuing to evolve to integrate XML as a function of the database. RDBMS is a reliable and proven
technology that will be here for the long run. This perspective provides guidance on how best to secure the database.
Guidance

e (G1346: Audit database access.

e (G1347: Secure remote connections to a database.

e (1348: Log database transactions.

e (G1349: Validate all input that will be part of any dynamically generated SQL.

¢ G1350: Implement a strong password policy for RDBMS.

e« (G1351: Enhance database security by using multiple user accounts with constraints.

e (G1352: Use database clustering and redundant array of independent disks (RAID) for high availability of data.

Best Practices

« BP1355: Do not design the database around the requirements of an application.

« BP1353: Use a data abstraction layer between the RDBMS and application for externally-visible applications to
prevent the disclosure of sensitive data.

Page 144

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > Network Computing > Enterprise Computing > Data
Tier > LDAP Security

P1042: LDAP Security

The Lightweight Directory Access Protocol (LDAP) can be thought of as a datastore. It is an open Internet standard
produced by the Internet Engineering Task Force (IETF). LDAP is, like X.500, both an information model and a protocol
for querying and manipulating it. The LDAP overall data and namespace model is essentially that of X.500. The major
difference is that the LDAP protocol itself is designed to run directly over the TCP/IP stack, and it lacks some of the more
esoteric DAP protocol functions. LDAP can store text, photos, URLSs, pointers to whatever, binary data, and Public Key
Certificates.

Guidance
e G1377: Use LDAP 3.0 or later to perform all connections to LDAP repositories.

e G1378: Encrypt communication with LDAP repositories.

Page 145

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > Network Computing > XML Web Service Security

P1085: XML Web Service Security

An XML Web Service is a way to describe a software application that exposes its interfaces as a set of services

that produce and consume SOAP formatted XML messages. This service-oriented architecture (SOA) describes its
capabilities and requirements in an XML-formatted Web Services Description Language (WSDL) file. A user can
consume this WSDL file to learn about the Web service interfaces available within an SOA. A provider may publish its
WSDL file to a UDDI registry so a user can dynamically discover and utilize the Web service.

—
2. 504P ML
Weh Service request 1o
Reguestor retriewe WEDL
[
1. 50AP /L
3. S0AP /L FEquED 1o
request register W5DL
» Provider
4. S04P 7 XML
response
Figare 1
[110%

The drawing above depicts a typical implementation of a service-oriented architecture using XML Web Services. Several
security challenges arise from this type of scenario including the following.

. Authentication (ensure that the sender of the message is genuine)
. A hacker may try to spoof the identity of a Web service to gain access to a service.
. A hacker may tamper with the WSDL file of a Web service provider in order to spoof an endpoint.

. Integrity (ensure that a message cannot be changed without detection by an unauthorized third party during
transmission)

. A hacker may intercept a message to or from a Web service provider and change its contents.
. Confidentiality (ensure that a message cannot be read by an unauthorized third party during transmission)

. A hacker may intercept a message to or from a Web service provider and try to read the contents to obtain
private information.

The XML Web services industry addresses these threats at the message level by incorporating existing technologies for
challenging authentication, protecting integrity and ensuring confidentiality.

This message level security is based on the requirement that incoming SOAP formatted XML messages prove a set
of claims made about the sender. These claims are cryptographically endorsed by an issuing authority and placed into
the sender's message as security tokens. An X.509 certificate is just one example of a security token. The message is

Page 146

Part 5: Developer Guidance

then encrypted and sent to the Web service provider who compares the claims of the incoming message with its security
policy. If the claims are valid, the provider processes the message and sends a response.

The following defines the list of specifications in the XML Web Services space:

WS-Security describes how to attach tokens, digital signatures and encrypted elements to a SOAP message.
Tokens can be binary like X.509 or XML-based like SAML

. XML Encryption
. XML Signature

WS-Trust describes how a message proves a set of claims (hame, key, permission, etc.) and explains how to
communicate with a token service to obtain a token

WS-Policy describes how a Web service indicates its security requirements (required security tokens, supported
encryption algorithms, etc.)

. WS-SecurityPolicy
. WS-PolicyAssertions

. WS-PolicyAttachment

Guidance

G1356: Use the SOAP standard for all Web services.
G1357: Do not rely solely on transport level security like SSL or TLS.

G1359: Bind SOAP Web service security policy assertions to the service by expressing them in the
associated WSDL file.

G1362: Validate incoming XML-based messages using a schema.
G1363: Do not use clear text passwords.

G1364: Hash all passwords using the combination of a timestamp, a nonce and the password for each message
transmission.

G1365: Specify an expiration value for all security tokens.

G1366: Digitally sign all messages where non-repudiation is required.

G1367: Digitally sign message fragments that are required not to change during transport.
G1369: Digitally sign all requests made to a security token service.

G1371: Use the Digital Signature Standard for creating Digital Signatures.

G1372: Use an X.509 Certificate to pass a Public Key.

G1373: Encrypt messages that cross an IA boundary.

G1374: Individually encrypt sensitive message fragments intended for different intermediaries.

G1376: Do not encrypt key elements that are needed for correct SOAP processing.

Best Practices

Page 147

Part 5: Developer Guidance
« BP1360: Use the XML Infoset standard to serialize messages.

e« BP1375: Use asymmetric encryption for SOAP-based Web services.

Page 148

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > Mobile Code

P1314: Mobile Code

Mobile code is software obtained from remote systems, transferred across a network, and then downloaded and executed
on a local system without explicit installation or execution by the recipient.

Conventional executable code refers to typical program code or software that is not embedded in data or text and that the
user knowingly executes. Conventional executable code includes both compiled and interpreted code; examples include
compiled C or Ada programs, scripts written in JavaScript or VBScript, Java applications, and binary .exe files.

Mobile code and active content are not interchangeable terms; incorrect usage can result in confusion. Mobile code is
a broad term encompassing code obtained from a remote system that downloads across a network and executes on a
local machine without the user's explicit initiation or knowledge. Active content is the term used to describe executable
code embedded within (or bound to) text or data that executes automatically without explicit user initiation. Examples

of active content include Microsoft Visual Basic for Applications (VBA) macros embedded in Microsoft Word and Excel
files, PostScript commands embedded in PostScript documents, and scripts embedded in Macromedia Director and
Shockwave movies.

As depicted in the figure below, mobile code is comprised of that active content or conventional executable code which
has become "mobile." When active content and/or conventional executable code resides statically on the workstation or
host on which it executes, it is not mobile code. However, when such code originates from an external system, traverses a
network, downloads onto a workstation or host, and executes without explicit user initiation, it becomes mobile code.

Active Conv entional
Content Executable
Code

[1218: Mohile Code

Mobile code brings many benefits to a computer system, such as reduction of communication, ability to perform
asynchronous tasks, dynamic software deployment, and temporary and scalable applications. But despite all the
benefits there are many threats that mobile agents bring to a computer system, such as denial of service, destruction,
unauthorized access, breach of privacy, and theft of resources, among others. These threats are related to protection of
the host systems and mobile code systems themselves.

The Department of Defense issued DoD Instruction 8552.01, Use of Mobile Code Technologies in DoD Information
Systems [R1292], in October 2006 to establish and implement DoD mobile code policy. This Instruction identifies DoD-
defined mobile code risk categories, describes their characteristics, and establishes restrictions for the acquisition (to
include development) and use of mobile code technologies assigned to each risk category. It also establishes restrictions
on the use of mobile code in email and emerging mobile code technologies and directs monitoring to detect the presence
of prohibited mobile code. Any prohibited mobile code discovered must be removed.

This instruction appllies to all DoD-owned or DoD-controlled information systems used to process, transmit, store, or
display DoD information. This includes mobile devices (e.g., cellular phones, handheld devices) capable of executing
mobile code. Mobile code that originates from and travels exclusively within a single enclave boundary is exempt from
the requirements of DoD Instruction 8552.01. However, if an enclave consists of geographically dispersed computing
environments that are connected by the Non-Classified Internet Protocol Router Network (NIPRNet), Secret Internet
Protocol Router Network (SIPRNet), Internet, or a public network, the requirements of this instruction apply.

Category 1 Mobile Code

Category 1 mobile code technologies exhibit a broad functionality, allowing unmediated access to workstation,
server, and remote system services and resources. Category 1 mobile code technologies have known security
vulnerabilities with few or no countermeasures once they begin executing. Execution of Category 1 mobile code
typically requires an all-or none decision: either execute with full access to all system resources or do not execute
at all.

Page 149

Part 5: Developer Guidance
The following mobile code technologies are assigned to Category 1A (allowed):

. ActiveX controls
. Shockwave movies (including Xtras)
The following mobile code technologies are assigned to Category 1X (prohibited):

. Mobile code scripts that execute in Windows Scripting Host (WSH) (e.g., JavaScript and VBScript
downloaded via a Uniform Resource Locator (URL) file reference or email attachment)

. HTML Applications (e.g., . HTA files) that download as mobile code
. Scrap objects

. Microsoft Disk Operating System (MS-DOS) batch scripts

. Unix shell scripts

. Binary executables (e.g., . exe files) that download as mobile code

The use of unsigned Category 1 mobile code in DoD information systems is prohibited.

Category 2 Mobile Code

Category 2 mobile code technologies have full functionality, allowing mediated or controlled access to workstation,
server, and remote system services and resources. Category 2 mobile code technologies may have known
security vulnerabilities but also have known finegrained, periodic, or continuous countermeasures or safeguards.

The following mobile code technologies are currently assigned to Category 2:

. Java applets

. Visual Basic for Applications (i.e., Visual Basic for Applications [VBA] macros)

. PostScript

. Mobile code executing in the Microsoft .NET Common Language Runtime

. PerfectScript

. LotusScript

Category 2 mobile code that does not execute in a constrained execution environment may be used in DoD

information systems if the mobile code is obtained from a trusted source over an assured channel. Information
regarding these assured channels is available from DoD Instruction 8552.01.

Category 3 Mobile Code

Category 3 mobile code technologies support limited functionality, with no capability for unmediated access to
workstation, server, and remote system services and resources. Category 3 mobile code technologies may have a
history of known vulnerabilities, but also support fine-grained, periodic, or continuous security safeguards.

The following mobile code technologies are currently assigned to Category 3:
. JavaScript, including Jscript and ECMAScript variants, when executing in the browser

. VBScript, when executing in the browser

Page 150

Part 5: Developer Guidance
. Portable Document Format (PDF)

. Flash

Category 3 mobile code technologies may be freely used without restrictions in DoD information systems.

Emerging Mobile Code Technologies

Emerging mobile code technologies refer to all mobile code technologies, systems, platforms, or languages whose
capabilities and threat level have not yet undergone a risk assessment and been assigned to one of the three risk
categories described above.

Some examples of emerging technologies follow:
. Microsoft's .NET Framework, when used to execute mobile code
. The flat script files used by Java WebStart to control the execution of Java applications

Because of the uncertain risk, the use of emerging mobile code technologies in DoD information systems is
prohibited.

Mobile Code in Emaill

Mobile code can be embedded in an email body or an email attachment and can be downloaded as part of the
actual email. Alternately, mobile code residing on a remote server can be referenced from within an email body or
attachment and can be automatically downloaded and executed. Some types of mobile code execute automatically
as soon as the user clicks on the message subject or previews the message; others execute when the user opens
an attachment containing mobile code. Email viruses, worms, and Trojan horses typically utilize mobile code
technologies; they are forms of malicious mobile code sent to users via email.

Due to the significant risk of malicious mobile code downloading into user workstations via email, and the ease
of rapidly spreading malicious mobile code via email, the following restrictions apply to all types of mobile code in
email independent of risk category:

. To the extent possible, the automatic execution of all categories of mobile code in email bodies and
attachments is disabled, compliant with DoD mobile code policy implementation guidance.

. To the extent possible, mobile code-enabled software is configured to prompt the user prior to opening email
attachments that may contain mobile code.

Code-Signing Certificate Requirements

DoD code-signing certificates (i.e., their associated private keys) are used to sign Category 1A mobile code that
will reside on DoD-owned or DoD-controlled servers prior to its installation on the servers. When code signing

is used to meet the requirements for Category 2 mobile code that will reside on DoD-owned or DoD-controlled
servers, the mobile code is signed with DoD code-signing certificates prior to its installation on the servers. DoD
code-signing certificates are designated as trusted by default by all Components. DoD-owned and DoD-controlled
servers are trusted sources by default.

Guidance

e (1883: Use a DoD PKI code signing certificate to sign mobile code residing on DoD-owned or DoD-controlled
servers.

e (G1884: Configure browsers to use Category 1A allowed mobile code per DoD Instruction 8552.01. [R1292]

» (1885: Configure browsers to disable Category 1X prohibited mobile code per DoD Instruction 8552.01. [R1292]

Page 151

Part 5: Developer Guidance
*« (G1886: Disable automatic execution of mobile code in email clients.

e (G1887: Monitor configured mobile code-enabled software to ensure it is in compliance with DoD Instruction
8552.01. [R1292]

Best Practices

« BP1888: Only enable plaintext viewing in email clients on DoD-owned and DoD-operated information systems.

Page 152

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > Smart Card Logon

P1315: Smart Card Logon

Smart Card Logon (SCL), also called Cryptographic Logon (CLO), capability enables users to log onto their unclassified
network using their Common Access Card (CAC) and associated Personal Identification Number (PIN) instead of a
username and password.

This capability addresses the Department of Defense (DoD) mandate in DoD Instruction 8520.2 [R1206] to Public Key
(PK) enable all unclassified networks for certificate-based authentication to DoD information systems. SCL provides the
increased security of two-factor authentication by allowing users to access their network with something they have (their
CAC with DoD issued certificates) and something they know (their PIN).

Note: Joint Task Force-Global Network Operations (JTF-GNO) Communications Tasking Orders (CTOs; for
example, CTO 06-02 and CTO 07-015) provide specific implementation directions for DoD, to include non-
Windows-based operating systems (see https://www.jtfgno.mil/index.htm; DoD PKI required). Additional Mobile
Code policy information is available from the Information Assurance Support Environment Web site, https://
iase.disa.mil/mcp/index.html; DoD PKI required.

Before enabling SCL, each unclassified network must also meet the following requirements:
. Implement Active Directory in the root domain

. Equip user workstations with a DoD-approved Windows operating systems, smart card readers, drivers, and the
appropriate version of middleware

. Populate Active Directory accounts with each user's Electronic Data Interchange Personal Identifier (EDI-PI)
numbers associated with the CAC certificates

Once users start using SCL to access their unclassified networks, they no longer need to remember their ever-changing

and complex network passwords. SCL is a more secure method of network logon because the PIN is not stored on or
transmitted over the network.

The following process illustrates how to use the PKI certificate for network logon:

. The user inserts the user's CAC into the smart card reader attached to the workstation, and, when prompted, enters
the user's CAC PIN instead of a username and password

. A secure process retrieves the PKI certificate from the CAC and verifies it is valid and from a trusted issuer
. The user's workstation verifies the network domain controller's certificate is valid and from a trusted issuer

. If the user's PKI certificate and the domain controller certificate are valid, the user is automatically logged onto the
network

Note: There are certain user groups (e.g., system administrators) that are unable to use PKI Certificates on a
CAC as the primary token for smart card logon. A DoD CIO memo of 14 August 2006, Approval of the Alternate
Logon Token (available via Defense Knowledge Online, https://www.us.army.mil/ [user account and DoD PKI
Certificate required] DoD PKE Knowledge Base Library Smart Card and Alternate Token folders) permits the use
of an Alternate Logon process.

Guidance
e (G1862: Configure Active Directory for Smart Card Logon.

e (G1869: Configure Domain Controllers for Smart Card Logon.

Page 153

https://www.jtfgno.mil/index.htm
https://iase.disa.mil/mcp/index.html
https://iase.disa.mil/mcp/index.html
https://www.us.army.mil/suite/collaboration/folder_V.do?foid=8989116&load=true

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Security > Secure Coding and Implementation Practices

P1316: Secure Coding and Implementation Practices

Many software errors and exploits share similar root causes resulting from the failure to follow common high level best
practices. This perspective provides insight into a few of the major secure coding and implementation best practices from
a programming language independent viewpoint.

This perspective does not provide all required guidance and best practices for secure software development. However, it
does strive to provide a high level overview of important areas for consideration during software development. Finally, this
perspective serves as a resource for additional information and tools for building secure software.

For best effectiveness, software security activities should occur throughout the development lifecycle. For example,
security requirements (such as required roles, privacy requirements, accreditation requirements, etc.) are captured

during the requirement phase of software system development. During the design phase, high level concepts such as
defense in depth and principal of least privilege are applied. During actual development, programmers follow predefined

development practices to include applying a coding standard. Finally, unit testing, regression testing, and peer reviews
test the developed software for security vulnerabilities and policies.

Detailed Perspectives
The Secure Coding Practices perspective includes the following topic areas:
. Apply Principal of Least Privilege
. Practice Defense in Depth
. Apply Secure Coding Standards
. Apply Quality Assurance to Software Development
. Validate Input
. Heed Compiler Warnings

. Handle Exceptions

Page 154

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts

Page 155

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > Secure Coding and Implementation Practices >
Practice Defense in Depth

P1318: Practice Defense in Depth

A good practice to manage risk is to have multiple layers of defensive strategies. This reduces risk, since an exploit in
one layer of defense may be stopped by another layer of defense and therefore eliminate or limit the consequences of the
exploit.

As an example, a software system may use Secure Sockets Layer (SSL), Public Key Infrastructure (PKI), WS-
Security along with SOAP, and provide security in integrity using database stored procedures, triggers and views.

Guidance

e G1301: Practice layered security.

Page 156

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > Secure Coding and Implementation Practices > Apply
Secure Coding Standards

P1319: Apply Secure Coding Standards

Develop to a documented coding standard for each target development language and platform to minimize the likelihood
of security vulnerabilities caused by programmer error. This coding standard should include secure coding practices but
may also include standards and policies that improve readability or maintainability.

Guidance

e (G1215: Provide a coding standards document.

Page 157

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > Secure Coding and Implementation Practices > Apply
Quality Assurance to Software Development

P1320: Apply Quality Assurance to Software Development

Quality assurance techniques are a useful tool in identifying and eliminating security vulnerabilities. Source code audits
and peer reviews should be a regular activity during software development and maintenance along with normal testing
activities.

To the extent possible, utilize automated tools to assist in verifying that code meets standards as defined in the applicable
coding standard document. This will result a more repeatable process and shorten the time required for a peer reviews.

Guidance

¢ (G1304: Unit test all code.

Page 158

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > Secure Coding and Implementation Practices >
Validate Input

P1321: Validate Input

Proper input validation can eliminate many software vulnerabilities. Do not limit validation to the presentation tier; rather,
all implementations of external facing modules should validate inputs prior to use. This can help prevent attacks including
SQL Injection, Cross-Site Scripting, Buffer Overflows, and Denial of Service.

Validation may include checking lengths of input parameters to prevent buffer overflows. It may also include checking
input against a list of allowed or disallowed characters to prevent execution of arbitrary code.

Guidance

¢ (G1302: Validate all inputs.

G1362: Validate incoming XML-based messages using a schema.

e (G1349: Validate all input that will be part of any dynamically generated SQL.

e (G1032: Validate all input fields.

e G1147: Use domain analysis to define the constraints on input data validation.

e (G1339: Practice defensive programming by checking all method arguments.

Page 159

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > Secure Coding and Implementation Practices > Heed
Compiler Warnings

P1322: Heed Compiler Warnings

Many run time errors are detectable during the compilation process. Compiler warnings are often useful in detecting
possible violations of syntax rules and mistakes introduced by developers which may lead to run time errors. For example,
a compiler may warn about use of the assignment operator "=" instead of the equality operator "=="inside an i f
statement or warn about unchecked buffer assignment which could lead to a buffer overflow resulting in the execution of
arbitrary code.

A good security practice to prevent many of these errors is to detect them at compile time by compiling code using

the highest warning level available for the compiler. Compilers often have a warning option which enables additional
warnings, for instance the GCC - Wl | flag and the Java - Xl i nt option. In many cases, these options only enable the
most common warnings and additional flags are required. Detailed understanding of the specific warning capabilities of a
given compiler are necessary to ensure that all of the desired warnings truly are enabled.

Upon receiving an error from the compilation process, developers should modify the code to remove the deficiency

or explicitly document the code stating the reason the code is valid but still produces a warning. Some programming
languages and compilers contain syntax for documenting such exception to compiler warnings and suppressing the
warning from the compiler output.

Note: Compiler warnings may vary depending on the compiler used and the target platform.

Best Practices

* BP1890: Compile code using the highest compiler warning level available.
e BP1891: Develop code such that it compiles without compiler warnings.

* BP1892: Explicitly document exceptions for valid code that produces compiler warnings.

Page 160

Part 5: Developer Guidance

Part 5: Developer Guidance > Overarching Concepts > Security > Secure Coding and Implementation Practices > Handle
Exceptions

P1323: Handle Exceptions

Exception objects can convey sensitive information through their message or exception type. Translate information
from exceptions to display meaningful information to users without displaying sensitive information from the exception.
For example, do not expose the file layout of a system to a user through an exception thrown during file access. When
necessary, catch and sanitize internal exceptions before re-propagating them to other parts of the system or displaying
the exception to the user.

Guidance

e (G1094: Catch all exceptions for application code exposed as a Web service.

e (G1340: Log all exceptional conditions.

Best Practices

« BP1893: Return meaningful, but unsensitive, information from exception handlers.

Page 161

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Programming Languages

P1113: Programming Languages

This Complex Perspectiive contains a collection of Detailed Perspectives which provide programming language guidance.
The purpose of the following Perspectives is to provide language-specific guidance with the purpose of improving
interoperability and net-centricity.

Detailed Perspectives

. C++

. VHDL

Page 162

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Programming Languages > C++

P1090: C++

The development of software is a complex and difficult process that covers a wide range of activities starting at the
earliest phases of requirements analysis all the way through the release of the software. In the DoD, many formal
processes, documents and reviews need to occur before software is ready for release as a product. This complexity has
increased as the accepted software development processes has evolved to embrace Object-Oriented techniques and
incremental development.

A number of individuals, institutions, companies and products have attempted to solve software development issues and
have produced a number of very useful papers, dissertations and books. It is not the intent of this NESI perspective to
re-state written material or to endorse any particular institution, corporation or product. This perspective highlights those
practices relating to the use of the C++ language which have demonstrated an ability to increase interoperability and
enable net-centricity. In particular, one goal of this perspective is to identify guidance and best practices which facilitate
interoperability of C++ code in order to promote reuse.

This perspective includes three sub-perspectives; much of the content is modeled after coding standards Herb Sutter and
Andrei Alexandrescu put forth in the referenced text.

Detailed Perspectives

. C++ Header Files
. C++ Operator Overloading

. C++ Namesapces and Modules

Page 163

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Programming Languages > C++ > C++ Namespaces and Modules

P1115: C++ Namespaces and Modules

Namespaces and modules are abstract containers for related items. Often, software developers use both to isolate
related items in order to promote reuse. Namespaces provide a context within which to define identifiers (i.e., classes,
constants, variables, and functions). One advantage of namespaces is that they allow multiple identifiers with the same
name to be used in the same code without name collisions.

Guidance
e G1778: Place all #i ncl ude statements before all namespace usi ng statements.
e G1779: Explicitly namespace-qualify all names in header files.

Best Practices

« BP1781: Allocate and de-allocate all module objects within the module that contains the objects.
« BP1782: Do not propagate exceptions across module boundaries.

« BP1783: Use portable types in a module's interface.

Page 164

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Programming Languages > C++ > C++ Operator Overloading

P1114: C++ Operator Overloading

C++ allows for overloading of operators in order to change their implementation depending on the type of arguments
provided. This can improve code clarity and serve as a short hand for developers. However, developers must be careful to
not change the expected behavior or semantics of an operator in a way that provides unexpected behavior to developers
using the code. Code which has clearly understood behavior has a better chance of being reusable.

Guidance

e G1775: Do not overload the logical AND operator.
e G1776: Do not overload the logical OR operator.

e G1777: Do not overload the conma operator.

Best Practices

« BP1780: Only overload arithmetic operators for objects that are arithmetic in nature.

Page 165

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Programming Languages > C++ > C++ Header Files

P1089: C++ Header Files

A header file in C++ describes the interface of the related implementation file. Header files serve as a communication
mechanism to describe interfaces including data-types, namespaces, required resources, as well as serving as a source
of reference documentation. The compiler uses header files during compilation, and humans use header files during
software development. To promote reuse, header files need to be self-describing and developed such that compilation is
straight forward and consistent from one compile to another.

Guidance
e G1773: Use #i ncl ude guards for all headers.
e G1774: Make header files self-sufficient.

e G1779: Explicitly namespace-qualify all names in header files.

Page 166

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Programming Languages > VHDL

P1088: VHDL

The development of hardware described by software is a complex and difficult process that covers a wide range of
activities: starting at the earliest phases of requirements analysis all the way through the fabrication of a functioning digital
circuit. One language developed for describing digital circuits is Very High Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL).

In the DoD, there are many formal processes, documents and reviews which need to be done in order for the software
code to be approved to be developed into a physical circuit. This complexity has been made more complicated in nature
as modern chip designs have become increasingly large and intricate. There have been many articles and books written
on these issues. It is not the intent of this perspective to re-state written material. It is the intent of this perspective to
highlight those practices which have been demonstrated to increase interoperability and reuse of VHDL code.

Detailed Perspectives

. VHDL Coding and Design
. VHDL Synchronous Design
. VHDL Synthesizable Design

. VHDL Testbench

Page 167

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Programming Languages > VHDL > VHDL Coding and Design

P1091: VHDL Coding and Design

Page 168

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Programming Languages > VHDL > VHDL Testbench

P1094: VHDL Testbench

A VHDL testbench is a VHDL component used to verify that a developing circuit design is functioning as planned. The
testbench generates the stimulus to drive the unit under test under a variety of test conditions, verifies that it meets
specifications, and reports all errors and warnings in a concise human readable format. The testbench is used during the
simulation phase of digital electronic design automation.

Guidance

e G1719: Automate testbench error checking in VHDL development.

Page 169

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Programming Languages > VHDL > VHDL Synthesizable Design

P1093: VHDL Synthesizable Design

To be able physically to implement hardware described by software, the design must be synthesizable. Synthesis is a
process where an abstract form of described circuit behavior (e.g., VHDL code) is mapped to an implementation in terms
of logic gates (AND, OR, NOT, etc.). Logic synthesis is an essential part of digital electronic design automation and is often
the step following code compilation and simulation.

Best Practices

« BP1723: Do not use guarded signals.

Page 170

Part 5: Developer Guidance
Part 5: Developer Guidance > Overarching Concepts > Programming Languages > VHDL > VHDL Synchronous Design

P1092: VHDL Synchronous Design

The engineers of digital integrated circuits (ICs) are very careful to make sure their designs are correct, for it is imperative
that hardware designs are correct before being fabricated into physical circuits. However, digital circuits are not easily
testable and real tests cannot be done on them until the circuit design has been finalized and physically produced. This
is one of the reasons why the majority of today's digital designs are based on a synchronous design to improve the
probability that the final produced chip will work by simplifying the process and using reliable techniques.

Guidance

e G1718: Design circuits to be synchronous.

Page 171

Part 5: Developer Guidance

Part 5: Developer Guidance > Service Definition Framework

P1296: Service Definition Framework

A Service Definition Framework (SDF) provides a common frame of reference for service users, customers, developers,
providers, and managers. Its structure and methodology enable full definition of the Service Access Points (SAPS)

for a service. The purpose of the SDF is not to describe the internal workings of a service. Rather, it concentrates on
defining the boundary conditions for accessing a service through its service access point. The SDF also includes specific
technical parameters and engineering-level data that prospective service developers and providers can use to design and
implement new enterprise service offerings.

Complete an SDF entry for each enterprise service. Subsequently, register each service in a service registry (e.g., the
NCES Service Discovery service or the Air Force Service Management Tool). The SDF provides the basis for a design
specification where potential implementers of a new service will find the information required to implement the service.
The SDF should address the following information for each service:

What the service does

How the service works (from a black box perspective)

Any required security mechanisms or restrictions

Any pertinent performance or quality of service (QO0S) information

Points of contact for the service:

Who is providing the service
Who is responsible for the daily operation of the service

Who is developing the service

The specifics of how to bind to (access or use) the service.

Service Profiles

A service profile captures the black box architecture of a service. It would precede and guide one or more service
implementations documented in association with the SDF. The use of a service profile becomes critical in the case
of those enterprise services that have more than one implementation and implementer across the enterprise. The
profile provides the guidance needed to ensure that multiple service implementations provide a common consumer
interface and are interoperable.

Proposed SDF Lifecycle

The proposed SDF lifecycle is to assist service implementers in developing and maintaining an SDF entry during
the lifecycle of an enterprise service. Scenarios include the following:

. Creating an SDF Entry

. Changing a Registered SDF Entry

. Deprecating a Registered SDF Entry

. Accessing a Registered SDF Entry

The proposed SDF Lifecycle is consistent with the DoD Acquisition Steps defined in the DoD 5000 series

Directives and Instructions. The table below describes the proposed steps for the SDF lifecycle, along with
associated business processes, the service owner and mandatory categories for each phase.

Page 172

Lifecycle
Element

Concept
Development

Requirements
and
Architecture

Part 5: Developer Guidance

Description

Identify
possible

need for a
new service
and create
justification for
service

Define service
architecture
and
requirements

Business
Processes

Examine
mission
threads and
search for
services to
fulfill them.
Identify
capability
gaps. These
gaps become
services
within
classification
domains.
Create high
level business
or mission
capability
statement.
Perform
initial cost
analysis and
Analysis of
Alternatives.
Define
acquisition
approach and
organizations
to execute
following
phase

Identify
specific
organizations
for each

type of user,
Define service
requirements
and
semantics.
Define service
architecture
to include
interaction
with other
services and
systems,
basic service
capabilities
and service
deployment
approach.
Perform
Systems
Program

Page 173

Service
Owner

Portfolio
Manager

Portfolio
Manager to
Acquirer

Mandatory
Categories
by Phase

Service
name, service
description,
schedule

Semantic
model,
pedigree,
information
security
marking,
cpoints of
contacts

Service
Design

Service Build

Service
Testing

Service
Deployment

Part 5: Developer Guidance

Create
service "black
box" interface
specs for
handoff to
developers

Develop/
purchase
service

Assure
service meets
specifications
and
requirements

Install service
instance(s)

Office (SPO)
level cost
analysis.

Start
configuration
management:

. finalize
semantics

. point to
metadata
repository

. finalize
classification
details

. determine

service
level
agreements
(SLASs)
offered,
finish
WSDL
Development
(generally
follows
contractor's
best
practices)
Acceptance
test:
. meets
specifications
. plays
well with
others
. interoperability
"seals of
approval"
from
authoritative
bodies
Configuration
management:

Page 174

Acquirer

Acquirer

Acquirer to
Operator/
Sustainer

Operator/
Sustainer

Operations,
number of
operations,
security
mechanisms,
access
criteria and
restrictions,
service level
specification,
network
requirements,
SAP

Consumer
patterns,
schedule
Beta,
operational
reference

Schedule:
integration

Schedule:
deployment

Service
Operation

Service
Deprecation

Service
Retired

Notional SDF Concept of Operations

Part 5: Developer Guidance

Operate
service;
concludes
with EOL

announcement.

Service is
still being
operated
but is to be
replaced

or retired;
concludes
with service
EOL

Service is not
operating;
service
definition
information is
still available
for use/reuse;
concludes
with purging
of service
definition
information

. updating
humans/
summary
from
monitoring

. measuring
coarse-
grained
triggers
for
action
(scaling)

Configuration
management:

. updating
humans/
summary
from
monitoring

. measuring
coarse
grained
triggers
for
action
(scaling)

Work with
consumers
to adopt new
version of
service, or
replacement
service(s) as
appropriate

Service
migration and
reuse

Page 175

Operator/
Sustainer

Operator/
Sustainer

Sustainer

Schedule:
operation

Schedule:
deprecation

Schedule:
retire

The Notional SDF Concept of Operations (CONOPS) outlines a theoretical concept for Service Discovery. The
SDF concept focuses on why a service is needed and how it is used. The Notional SDF CONOPS addresses the

Part 5: Developer Guidance

following issues:

Key Assumptions:

. Location, composition, extensibility, syntax, failover, information assurance, alignment to COls and

applicable security classification level

. Governance

. Services are made available via an Enterprise Service Bus or via the Web services stack

. The SDF will be used for defining services from many sources and multiple languages

Creation of an SDF Entry
. Two scenarios in which a service will require the creation of an SDF entry:
. Capability already exists and will be "service enabled"
. Capability does not exist
. The SDF entry becomes part of the Key Interface Profile (KIP) for that service
Services Lifecycle and SDF Development Process Flow
. Establishment of a business case
. Warfighter or COI has defined a need
. Service requirements analysis and definition
. Funding
. Resources assigned
. Design
. Development
. Test
. Deploy
SDF Implementation
. SOA
. Publishing
. Discovery
. Binding
. Operations and maintenance
. Change Management

. Deprecation
Page 176

Part 5: Developer Guidance
. Monitoring and maintenance

Under SDF Implementation, NESI also advises that ConOps include Portfolio Management and
Capability Planning. NESI will add these components in future versions.

SDF Considerations
. Describe all services using a standard Service Definition Framework (SDF).
. Adhere to DoD Policy as a core definition for the SDF
. Extensions can be made to core definition to suit specific needs
. May want to extend "Required" fields (from core SDF)

. Capture and track associated Lifecycle Phase

. The "Owner" of the service (and SDF) will change as the Lifecycle Phase changes; update the SDF at each

Lifecycle phase.
. Begin capturing SDF data at the earliest possible Lifecycle Phase, preferably Concept Development.
. Not all information will be available

. Recommended to trace service capability back to operational needs, shortfalls and requirements

. Make SDF data accessible by storing contents either in an XML document in conformance with the XML

Schema or in the form of a set of database tables with a front-end.

. The XML Schema or database tables will contain all elements and attributes of the core (and extended)

SDF

. Common practices for database tables with a front-end include the following:

. Group SDF data elements into logical categories and reflect such in the User Interface (Ul) for

ease of use; do not just provide one large input form

. Reports are high value; being able to view SDF data via reports allows for relationships to be

discovered and services to be managed (Portfolio Management, Capability Based Planning)

. Role-based access for data editing is vital for information assurance and integrity; don't want

Service Owner A to edit Service Owner B's SDF

. Enforce security policies at the Data Level rather than at the application and/or Ul level; provides
stronger information assurance and accountability (audits); allows data entries and data fields to

be customized to each user/role

. Capture SDF data from discrete choices (lists) rather than just "free text"; while free text can be searched via

key word, it does not allow as much capability for data relationships and data mining.

. Make SDF data understandable and use terminology/labels relevant to the particular domain (enterprise).

. Designate minimally required data with respect to appropriate Lifecycle Phase needed for a complete
understanding of the service at that phase.

. Tie "Required" fields to lifecycle phases; some information may not be available at earlier phases, but

would be required before eventually moving into a later phase.

Page 177

Part 5: Developer Guidance
SDF Template

The SDF Template provides a sample logical model to help the service implementer to understand the big picture
for the Service Definition Framework. The logical SDF model, summarized in the following table, provides the
primary service element categories and service element names. Each service element represents information
that may or may not be relevant to the particular service being described. Some service elements may only

be applicable during certain phases in the service lifecycle. Other service elements may not apply to specific
technologies.

The attributes of a service that are necessary to effectively define and describe the service are identified within the
SDF and organized into the following categories:

. Interface information

. Security information

. Service level information

. Implementation information

. Point of contract (POC) information

. Service Access Point (SAP) information

All categories, with the exception of the SAP, are abstract and allow defining the service so as to encourage
semantic understanding of the service. The last category (SAP) is the concrete portion that is filled in after the
service implementation and deployment. The SAP binds the abstract service specification to the concrete service

interface as implemented by an actual process. Specific syntax, protocols and IP address required to use the
functionality provided by the service are contained in the SAP.

In the table, the service elements have an associated cardinality for inclusion in the SDF. Cardinality is interpreted
as follows:

. Cardinality = 1: Element is mandatory, one instance only

. Cardinality = 1..n: Element is mandatory, one to many ("n" = no upper limit, or upper limit is specified)
. Cardinality = 0..1: Element is optional, but limited to one instance if it is present

. Cardinality = 0..n: Element is optional, and there may be one instance or more if it is present.

Table 2 has an additional column, which is the recommended lifecycle phase where the given service element
applies. A detailed specification of Service "Data" Elements will be included in a future release of NESI.

Service Category Service Element Cardinality Service
Element Development
Lifecycle Phase
Interface ServiceName 1 Concept
information Development
Service Description 1 Concept

Development

Semantic Model 0.1 Requirements &
Architecture

NumberOfDataTypes 1 Service Design
DataTypes 0..n Service Design
NumberOfOperations 1 Service Design
Operations 1l.n Service Design

Page 178

Part 5: Developer Guidance

ServicePedigree 1 Requirements &
Architecture
Security SecurityMechanisms 1 Service Design
information
AccessCriteriaAndRestrictioris Service Design
InformationSecurityMarking 1 Requirements &
Architecture
Service level NumberOfServiceLeyvels 1 Service Design
information
ServiceLevelSpecifications 0..n Service Design
NetworkRequirements 0.1 Service Design
Implementation ConsumerPatterns 0.1 Service Build
information
NumberOfScheduleDates 1 Concept
Development
Schedule 1.n Concept
Development
NumberOfOperationalReferehces Service Build
OperationalReference 0..n Service Build
VersioningApproach 0..n Service Design
POC information NumberOfContacts 1 Requirements &
Architecture
Contacts 1.n Requirements &
Architecture
SAP information NumberOfSAPs 1 Service Design
ServiceAccessPoint 0..n Service Design

Page 179

Guidance and Best Practice Detalls

Part 5: Developer Guidance

G1001
Statement:

Use formal standards to define public interfaces.

Rationale:

It is important to use a common language to define the interfaces so producers and consumers can work
independently and together.

There are many standards for defining interfaces (UML, WSDL, and CORBA). Use a documented standard that is
widely accepted by industry.

Referenced By:

Maintainability

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Make Data Interoperable
Interoperability

Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
Publish and Insulate Public Interfaces

Evaluation Criteria:

1) Test: [61001.1]

Do UML documents exist that describe the shared interfaces?
Procedure:

Ask for the design documents to be provided during the review process.
Example:

None

2) Test: [G1001.2]

Are there WSDL files that document the interface to Web services?
Procedure:

Look for the existence of . WSDL files.

Example:

None

3) Test: [G1001.3]

Are there IDL files that document the interfaces to CORBA services?

Page 181

Part 5: Developer Guidance

Procedure:
Look for the existence of . i dl files.
Example:

None

Page 182

Part 5: Developer Guidance

G1002
Statement:

Separate public interfaces from implementation.

Rationale:

This guidance encourages clean separation between interface and implementation details for all types of
application development. This allows components and systems to be loosely coupled. The flexibility allows
groups of developers to work independently and in parallel to the contract defined by the interface.

Another benefit of hiding implementation details is that it allows the implementation to change without affecting
users of the interface. This means the interface can support dynamic and pluggable implementation.

Referenced By:

Design Tenet: Open Architecture

Composeability

Publish and Insulate Public Interfaces

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Maintainability

Extensibility

Evaluation Criteria:

1) Test: [61002.1]
C++: Check to make sure interfaces are defined as pure virtual functions.
Procedure:

Make sure C++ classes are defined in header files. Classes that represent external interfaces should contain only
pure virtual functions. Make sure the class does not declare non-constant data members. Also, make sure it does not
define default implementation. An interface should provide no default behavior.

Example:

None

2) Test: [G1002.2]

C: Check to make sure functions are declared in a header file using prototypes.
Procedure:

Make sure each library function has a prototype declaration in the header file.
Example:

None

Page 183

Part 5: Developer Guidance

G1003
Statement:

Separate the contents of application libraries that are to be shared from libraries that are to be used internally.

Rationale:

The public libraries that are intended to be shared with outside consumers need to remain fairly static in order
to facilitate independent development by the consumer and the producer of the libraries' functionality. The
consumer and the producer should mutually agree to changes in libraries.

All library content should not have external dependencies that are not related to supporting the interface.

There must be clear separation between domain-specific and shared libraries. Libraries that will be used in joint or
multiple projects should not have domain-specific code.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Interoperability

Maintainability

Publish and Insulate Public Interfaces
Composeability

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Design Tenet: Cross-Security-Domains Exchange

Evaluation Criteria:

1) Test: [61003.1]

Do the publicly shared libraries have any private or undocumented functionality?
Procedure:

Check each library against the publicly defined header and make sure that all objects or methods are public.
Example:

None

2) Test: [G1003.2]

Does the library contain extraneous interfaces or code that is not required?
Procedure:

Use coverage tool/Junit to make sure there is no extraneous code.

Example:

None

Page 184

Part 5: Developer Guidance
3) Test: [G1003.3]

Do the publicly shared libraries have any private or undocumented functionality?
Procedure:

Check to make sure that one library use of another library does not cross domain-specific boundaries. For instance,
a common library of utilities should not have dependencies on another library that supports a specific such as UHF
satellites. However, the reverse is okay.

Example:

None

Page 185

Part 5: Developer Guidance

G1004
Statement:

Make public interfaces backward-compatible within the constraints of a published deprecation policy.
Rationale:

The public interface is basically a contract between the producer of the functionality defined in an interface and
the consumer of the functionality. This and related guidance statements are intended to ensure that this contract
remains intact and that the consumer of the functionality is not broken during the update cycle of the interface.

Referenced By:

Public Interface Design

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Maintainability

Design Tenet: Open Architecture

Publish and Insulate Public Interfaces

Versioning XML Schemas

Evaluation Criteria:

1) Test: [61004.1]

Does the public interface (interfaces that are used externally, outside the project's domain) contain versioning
information?

Procedure:

Check to make sure the interface/class has versioning information.

Example:

None

2) Test: [G1004.2]

Does the document structure contain a document that indicates the shelf life of deprecated interfaces?
Procedure:

Check for project documents that have information on the life of deprecated interfaces.

Example:

None

Page 186

Part 5: Developer Guidance

G1005
Statement:

Separate infrastructure capabilities from mission functions.

Rationale:

Applications should not try to reinvent the wheel by creating custom enterprise services such as messaging,
directory services, logging, etc. Application development should use standardized APIs to access common
enterprise services. For instance, in Java, use JMS to access a messaging system.

Referenced By:

Publish and Insulate Public Interfaces

Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Interoperability

Evaluation Criteria:

1) Test: [61005.1]

Does the application re-create common and available enterprise services?
Procedure:

Check the application code for code that recreates functionality of an enterprise service.
Example:

None

2) Test: [G1005.2]

Does the application code access enterprise services in a vendor-specific way?
Procedure:

Check for code that accesses a vendor-specific APl instead of utilizing an industry-standard API.
Example:

None

Page 187

Part 5: Developer Guidance

G1007
Statement:

Ensure that applications use open, standardized, vendor-neutral API(S).

Rationale:

Using standardized, open APIs will enable the code to be more portable. It will also prevent vendor lock-in.
"Standardized" means industry consensus. "Open" means available to everyone.

Referenced By:

Publish and Insulate Public Interfaces

Design Tenet: Open Architecture

Interoperability

Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61007.1]
Does the application create customized/proprietary solutions where standardized APIs exists?
Procedure:

Check the application for code that has proprietary solutions where standardized APIs exists. For instance, does the
application write its own messaging system, bypassing utilizing the API.

Example:

None

2) Test: [G1007.2]

Does the application utilize vendor-specific APIs?
Procedure:

Check the application to make sure it is not using vendor-specific APIs. For instance, see if the application accesses
the database using a proprietary interface from Oracle instead of the standard calls.

Example:

None

Page 188

Part 5: Developer Guidance

G1008
Statement:

Isolate platform-specific interfaces and vendor dependencies.

Rationale:

Insulating platform-specific code using standard abstractions or custom classes will keep all non-portable code in
one place and prevent proliferation of non-portable code throughout the application.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Publish and Insulate Public Interfaces

Design Tenet: Accommodate Heterogeneity
Interoperability

Evaluation Criteria:

1) Test: [61008.1]
Does the application contain any platform-specific code that has not been abstracted?
Procedure:

Check code that is non-portable; for instance, the code does not use back slashes (Windows) or forward slashes
(UNIX) in literal strings to create a path.

Example:

String path = "\tnmp";

2) Test: [G1008.2]

Is platform-specific code isolated into a single class or file?
Procedure:

Search the files for platform-specific code.

Example:

None

Page 189

Part 5: Developer Guidance

G1010
Statement:

Use open-standard logging frameworks.
Rationale:

Standardizing on one logging API means the code will be more portable between developers, and developers no
longer need to learn multiple logging frameworks.

Referenced By:

Publish and Insulate Public Interfaces

Design Tenet: Open Architecture

Design Tenet: Enterprise Service Management
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [61010.1]
See sublevel guidance: G1209, G1210.

Procedure:

Example:

Page 190

Part 5: Developer Guidance

G1011
Statement:

Make components independently deployable.

Rationale:

Independently deployable components do not have any dependencies on other components. This is often
unattainable because components are often aggregations of lower-level components. Exceptions to this rule can
occur if the relationships between components are one or more of the following:

. well-defined and well thought out

. carefully managed

. externally configurable

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Design Tenet: Accommodate Heterogeneity
Composeability

Implement a Component-Based Architecture
Design Tenet: Open Architecture

Evaluation Criteria:
1) Test: [G1011.1]
Is the component dependent on other components?
Procedure:
Check for dependencies.
Example:

None

Page 191

Part 5: Developer Guidance

G1012
Statement:

Use a set of services to expose Component functionality.

Rationale:

By exposing discrete units of functionality as services, business and data integrity remain intact. A service
receives a request, processes it, and returns the result to the requester as a single operation.

Referenced By:

Design Tenet: Scalability

Interoperability

Design Tenet: Service-Oriented Architecture (SOA)
Implement a Component-Based Architecture
Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture

Composeability

Evaluation Criteria:

1) Test: [G1012.1]

Are there WAR files that contain the component?
Procedure:

Check for the occurrence of . war files.
Example:

None.

2) Test: [G1012.2]

Are there WSDL files that define the services?
Procedure:

Check for the occurrence of . wsdl files.
Example:

None.

Page 192

Part 5: Developer Guidance

G1014
Statement:

Access databases through open standard interfaces.

Rationale:

The use of non-standard interfaces can cause portability issues. Standards-based database interfaces promote
database independence. For example, ODBC is a standard database interface for referencing databases with C/C
++ and .NET, while Java Database Connection (JDBC) is a standard API for accessing databases with Java.

Referenced By:

Decouple from Applications

Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61014.1]
Are standard interfaces used to access databases?
Procedure:

Check that standards-based interfaces are used to access databases; for example, ODBC for C,C++, or .NET
languages, or JDBC for Java.

Example:

None.

Page 193

Part 5: Developer Guidance

G1018
Statement:

Assign version identifiers to all public interfaces.
Rationale:

Assigning versions is necessary when determining compatibility between the interface and its consumer.
Versioning public interfaces allows all parties to track the evolution of the interface for backward compatibility. This
can help consumers plan for integration and migration. It is important to have the version information in the shared
public interface code because it identifies the actual interface to which consumers of the interface will be coding.
Another benefit is that it allows tools to generate the documentation automatically so it does not need to be in two
places.

Referenced By:

Design Tenet: Open Architecture

Maintainability

Design Tenet: Service-Oriented Architecture (SOA)
Public Interface Design

Interoperability

Publish and Insulate Public Interfaces

Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test: [G1018.1]
Does the shared public interface code contain versioning information?
Procedure:
Inspect public interfaces or their supporting documentation for version identifiers.
Example:

None.

Page 194

Part 5: Developer Guidance

G1019
Statement:

Deprecate public interfaces in accordance with a published deprecation policy.

Rationale:

By deprecating instead of removing interfaces, development teams can plan for software migration and continue to
run the software with existing (but deprecated) interfaces.

Referenced By:

Reusability

Public Interface Design

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Publish and Insulate Public Interfaces

Design Tenet: Accommodate Heterogeneity
Versioning XML Schemas

Maintainability

Evaluation Criteria:
1) Test: [61019.1]
Are public interfaces appropriately deprecated?
Procedure:

Check the project documentation for deprecation policy.

Check that interfaces are properly marked and removed according to the deprecation policy.

Example:

None

Page 195

Part 5: Developer Guidance

G1021
Statement:

Create fully insulated classes.

Rationale:

Data members should not be public.

Do not expose implementation details of a class. For instance, information such as the use of a link list or
hashtablein a class should not be exposed (i.e., made public).

Making implementation details public creates interdependencies between the class and its users, subjecting the
users to changes in implementation. Therefore, access should only occur via public interface methods. This makes
the implementation more robust, because all data can be validated when assigned new values or the changes can
be logged.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Public Interface Design

Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [61021.1]

Do instance variables have public access or are they more accessible than necessary?
Procedure:

Check that the instance variable in classes does not have public access unless it is static and final.
Example:

None

2) Test: [G1021.2]

Does the class provide direct access to internal data via pass by reference?

Procedure:

Check to make sure that the methods that access the internal state do not return a reference to the internal data.
Example:

None

Page 196

Part 5: Developer Guidance

G1022
Statement:

Insulate public interfaces from compile-time dependencies.

Rationale:

There are three distinct advantages to separating interface from implementation:

. Multiple interested parties (COls) can develop the interface and publish it to the user community ahead of
any specific implementation. This allows groups to work independently and in parallel.

. It prevents multiple copies of the defining interface. Duplicating the code for the interface in each
implementation (library, jar, and assembly) makes it difficult to maintain, especially as the interface evolves.

. It insulates developers from the constant changes in implementation.

Referenced By:

Publish and Insulate Public Interfaces
Maintainability

Design Tenet: Open Architecture

Design Tenet: Service-Oriented Architecture (SOA)
Public Interface Design

Design Tenet: Accommodate Heterogeneity
Composeability

Evaluation Criteria:

1) Test: [61022.1]
Is the packaging or deployment of the public interface self-contained and isolated to only the public interface(s)?
Procedure:

Check to make sure that the jar, library, assembly, and WSDL only contain the agreed-upon public interface
(interfaces being shared externally).

Example:

None

2) Test: [G1022.2]

Does the container (jars, libraries, assemblies, WSDL) contain files other than the interface?
Procedure:

Check to make sure the library does not include or rely upon any other files such as resource files, properties files,
configuration files, other libraries, XML files, and so on that would force the repackaging of the public interface.

Page 197

Part 5: Developer Guidance
Example:

None

3) Test: [G1022.3]

Are there any outside influences that could affect the packaging of the public interface?
Procedure:

Check the public interface for dependence on resource files, properties files, configuration files, XML files, and other
libraries or packages.

Example:

None

Page 198

Part 5: Developer Guidance

G1027
Statement:

Internally document all source code developed with DoD funding.

Rationale:

Well-documented source code is easier to maintain and enhance over time. It is hard enough to get documentation
about software and to keep it up to date. If the documentation is not internal to the source code, the chances

that the software is current and up-to-date decreases. In recent years, the trend has been to generate external
documentation about the software by processing the source code and comments (e.g., Javadoc).

In addition to documenting the functionality of the source code, it is important to capture the configuration control
information (e.g., CVS).

Referenced By:

Standard Interface Documentation

Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [61027.1]

Do all the source code files have a header that includes a statement protecting government rights to the source code
and the right to change the source code?

Procedure:

Scan each file and make sure the header includes a statement that protects the government's right to use, modify, and
share the information with other government departments and agencies.

Example:

None

2) Test: [G1027.2]

Do all the source code files have a header that includes configuration information?
Procedure:

Scan each file and make sure the header also includes configuration management information such as author, date
created, and a history of modifications and versions.

Example:

None

Page 199

Part 5: Developer Guidance
3) Test: [G1027.3]

Do all the source code files have internal documentation for attributes, methods that a computer process?
Procedure:

Scan the source files and make sure they are internally documented with tags such as Javadoc or XML tags.
Example:

None

Page 200

Part 5: Developer Guidance

G1030
Statement:

Use a standard GUI component library.
Rationale:

A predefined component library helps control cost and configuration. Licensing issues can be resolved before
development begins, and component costs are minimized by avoiding library overlap.

Now that component architecture is standard, it is possible to put together applications using a variety of
components from multiple vendors. These components are bundled in third-party toolkits that vastly extend the
range of options available in standard Windows or Java GUI toolkits. These toolkits are in common use and
possess a wide variety of pre-built components. Almost all support common look-and-feel (e.g., Windows or
Java).

Referenced By:

Design Tenet: Accommodate Heterogeneity

Thick Clients

Design Tenet: Open Architecture

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:
1) Test: [61030.1]
Does the user interface code use any other toolkits besides a Standard GUI Toolkit?
Procedure:

Check to make sure the thick-client code is developed using the Swing/AWT library in Java, and the standard,
included Windows Toolkit In .NET.

Example:

None

Page 201

Part 5: Developer Guidance

G1032
Statement:

Validate all input fields.

Rationale:

Detect errors as close to point-of-data-entry as possible. This greatly enhances the end-user experience

and reduces frustration. This can be done by reducing the number of freeform text fields and using selection
mechanisms such as radio buttons, option boxes, pull down lists, maps, calendars, clocks, slider bars, and other
numeric validation entries.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Design Tenet: Accommodate Heterogeneity
Design Tenet: Enterprise Service Management
Presentation Tier

Human-Computer Interaction

Design Tenet: Open Architecture

Validate Input

Evaluation Criteria:
1) Test: [61032.1]
Do the GUI screens use non-freeform text entry fields?
Procedure:
Scan the GUI code looking for the use of non-freeform text data entry mechanisms.
Example:

None.

Page 202

Part 5: Developer Guidance

G1035
Statement:

Follow W3C standards for code which will generate a Web page display.

Rationale:

Code cannot be browser-independent if it uses vendor-specific add on features. Vendor-specific add-on features
reduce the portability and interoperability of the code. Vendor-specific API(s) can cause vendor lock-in and in
many cases can also cause version lock-in. Following the W3C standards avoids these problems.

Referenced By:

Browser-Based Clients

Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture

Interoperability

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:
1) Test: [61035.1]
Does the code adhere strictly to the W3C standards?
Procedure:
Check to make sure there is no vendor-specific code.
Example:

None

Page 203

http://www.w3.org/

Part 5: Developer Guidance

G1043
Statement:

Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.

Rationale:

Formatting information will be located in one location instead of scattered throughout each individual Web page of
a Web site. This makes a Web site more maintainable.

Referenced By:

Design Tenet: Accommodate Heterogeneity

Style Sheets

Design Tenet: Open Architecture

Maintainability

Browser-Based Clients

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:
1) Test: [61043.1]
Are any formatting attributes used in any of the HTML tags?
Procedure:
Search all Web pages and make sure there are no formatting attributes such as align, color, font, or size in any tags.
Example:

None

Page 204

Part 5: Developer Guidance

G1044
Statement:

Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973 (as
amended) when developing software user interfaces.

Rationale:

Applicable software must comply with Federal standards to enable better application use for those with disabilities.

Referenced By:

Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Designing User Interfaces for Accessibility

Evaluation Criteria:

1) Test: [G1044.1]
Do all Web document HTML, JSP, ASP, and CSS follow the Disability Act guidelines?
Procedure:

Check to make sure all Web documents follow the guidelines.

Use available validation tools to validate Section 508 accessibility and WAI accessibility. Go to http://
www.contentquality.com/Default.asp to validate the page.

Example:

None

Page 205

http://www.contentquality.com/Default.asp
http://www.contentquality.com/Default.asp

Part 5: Developer Guidance

G1045
Statement:

Define XML format information separately in XSL.

Rationale:

XML documents should be free of any presentation information and should only contain data. Separating
presentation data from content allows multiple presentations for the same content data.

Referenced By:

Defining XML Schemas

Design Tenet: Service-Oriented Architecture (SOA)
XML Rendering

Reusability

Design Tenet: Accommodate Heterogeneity
Composeability

Design Tenet: Open Architecture

Evaluation Criteria:
1) Test: [61045.1]
Check for presentation information in XML documents?

Procedure:

Does the XML document contain only data?

If the XML document is not an document, does it contain presentation information?
Example:

None

Page 206

Part 5: Developer Guidance

G1050
Statement:

In ASP, isolate the presentation tier from the middle tier using COM objects.
Rationale:

This is the best way to isolate the presentation tier from the middle tier in ASP.
Referenced By:

Active Server Pages (ASP)

Design Tenet: Service-Oriented Architecture (SOA)
Composeability

Design Tenet: Open Architecture

Evaluation Criteria:
1) Test: [61050.1]
Is all the middle tier code isolated from the presentation tier in ASP via COM?
Procedure:

Verify that ASP files do not contain middle-tier code. Instead, this code should be in COM objects referenced from the
ASP.

Example:

None

Page 207

Part 5: Developer Guidance

G1052
Statement:

Use the code-behind feature in ASP.NET to separate presentation code from the business logic.

Rationale:

Separating presentation code from business logic allows the developers and content designers to work
independently. It also makes the code more maintainable because changes in the design elements or business
elements do not affect each other.

Referenced By:

Design Tenet: Open Architecture

Composeability

Design Tenet: Service-Oriented Architecture (SOA)
Active Server Pages for .NET (ASP.NET)
Maintainability

Evaluation Criteria:

1) Test: [61052.1]
Is there code in ASP pages?
Procedure:

Check to make sure that ASP files have the code-behind attribute in the first line instead of embedded C# code in the
ASP.

Example:

None

Page 208

Part 5: Developer Guidance

G1053
Statement:

Do not embed HTML code in any code-behind code used by aspx pages.
Rationale:

Intermixing VB or C# or C++ with presentation code (HTML) makes the code unnecessarily difficult to maintain by
both the developer and designer. This is similar in concept to Java's not embedding HTML code in servlets.

Referenced By:

Active Server Pages for .NET (ASP.NET)

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Maintainability

Evaluation Criteria:
1) Test: [61053.1]
Check for HTML code in code-behind code.
Procedure:
Check the code-behind file (. aspx. vb for example) for any HTML tags.
Example:

None

Page 209

Part 5: Developer Guidance

G1056
Statement:

Specify a versioning policy for .NET assemblies.

Rationale:

Versioning assemblies and configuring dependent assemblies allow the Common Language Runtime (CLR) to
load the proper assemblies at runtime for an application. This insulates the application from system configuration
changes.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Active Server Pages for .NET (ASP.NET)

Design Tenet: Open Architecture

Evaluation Criteria:
1) Test: [61056.1]
Does the application assembly have versioning information?
Procedure:

Check the application assembly manifest for versioning information.

Use the .NET configuration tool to check for versioning policy and versioning information.
Example:

None

Page 210

Part 5: Developer Guidance

G1058

Statement:

Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

Rationale:

Separating data-layer code from presentation-layer code provides the ability to base multiple views on the same
model. This is especially important in the enterprise model because often, the user interface varies with the device
(browser, mobile phone, thick client, etc.).

Isolating different layers allows changes to occur in each layer without impacting other layers. For instance, if the
data layer (model) decides to switch databases, the changes are isolated to the data layer and do not affect the
view layer or controller layer.

Lastly, because MVC architecture enforces separation between presentation, processing, and data layer, this
allows functionality to be loosely coupled and therefore more suited for reuse.

Referenced By:

Design Tenet: Open Architecture

Maintainability

Reusability

Active Server Pages for .NET (ASP.NET)

Design Tenet: Accommodate Heterogeneity
Composeability

Active Server Pages (ASP)

Java Server Pages (JSP)

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61058.1]
Does the application use a Model 2 (MVC) pattern?
Procedure:

Check to see if all requests are being mapped to a single controller servlet.

Check that all page rendering are being done by a and not a .
Example:

None

2) Test: [G1058.2]

Does the application enforce clear separation between data layer (model), presentation layer (view), and middle/
business layer (controller)?

Page 211

Part 5: Developer Guidance
Procedure:
Check to make sure the application presentation is not accessing the database directly.
Check to make sure the application data layer (model) is not implementing business logic (store procedures).

Check to make sure the middle/business layer (controller) does not contain presentation code. For example, make
sure servlets do not generate HTML.

Make sure access to the database is isolated to Data Access Object instead of proliferated throughout the middle
layer.

Example:

None

Page 212

Part 5: Developer Guidance

G1060
Statement:

Encapsulate Java code that is used in JSP(s) in tag libraries.

Rationale:

Separating code from presentation allows developers and designers to work independently. It makes the code
reusable and more maintainable because it is defined in a tag library.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Composeability

Java Server Pages (JSP)

Maintainability

Reusability

Evaluation Criteria:
1) Test: [61060.1]
Do the JSP pages use tag libraries?
Procedure:
Look through the JSP pages for embedded Java source code.
Example:

None

Page 213

Part 5: Developer Guidance

G1071
Statement:

Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).

Rationale:

Increase portability and maintainability. Many of the newer connection mechanisms are vendor-neutral. Use these
instead of isolation design patterns or vendor-specific connection mechanisms.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Maintainability

Design Tenet: Open Architecture

Interoperability

JNDI Security

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:
1) Test: [G1071.1]
Is the connection mechanism vendor-neutral?
Procedure:
Examine the source code for vendor-specific imports or includes. Use only standard APIs.
Example:

None

Page 214

Part 5: Developer Guidance

G1073
Statement:

Isolate vendor extensions to enterprise-services standard interfaces.

Rationale:

Vendor extensions are convenient but help create "vendor lock" and reduce vendor neutrality and migration. It is
best to avoid these extensions altogether. If that is not possible, then isolate them in an adapter or a wrapper-like
construct.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
Interoperability

Maintainability

Publish and Insulate Public Interfaces

Evaluation Criteria:
1) Test: [61073.1]
Are vendor extensions to enterprise services used?
Procedure:
Make sure that no vendor-specific code is included or imported except as part of an adapter or wrapper.
Example:

None

Page 215

Part 5: Developer Guidance

G107/8
Statement:

Document the use of non-Java EE-defined deployment descriptors.
Rationale:

Deployment descriptors that are not defined by the J2EE specification are not portable between application
servers. For example, BEA WebLogic has a vendor-specific deployment descriptor called webl ogi c- ej b-
j ar. xm and JBoss has a vendor specific deployment descriptor called j boss-j ar. xm .

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Design Tenet: Open Architecture

Java EE Environment

Evaluation Criteria:

1) Test: [61078.1]

Are all the XML files that are not part of the Java EE specification identified in a delivered document?

Procedure:

Search all XML documents in the META-INF and WEB-INF directories and identify any XML files that are not defined
by Java EE. These files should be in a README or other delivered file that describes their purpose:

Example:
Web application VEB- | NF/ web. xm
EJB JAR META- | NF/ ej b-j ar. xm
J2EE Connector META- 1 NF/ ra. xm
Client application META- | NF/ application-client.xn
Enterprise application META- | NF/ appl i cation. xm

Page 216

Part 5: Developer Guidance

G1079
Statement:

Isolate tailorable data values into the deployment descriptors for Java EE applications.

Rationale:

Do not hard-code tailorable data into source files. The standard location for tailorable data for Java EE applications
is in deployment descriptors. Developers should not "reinvent the wheel" by creating a non-standard mechanism
for retrieving configurable data. Make tailorable data accessible through application contexts provided by the
application container (Java EE application server).

Referenced By:

Java EE Environment

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

JNDI Security

Evaluation Criteria:

1) Test: [61079.1]

Is tailorable data configured using deployment descriptors?
Procedure:

Check the deployment descriptor for instances of tailorable data.
Example:

Name-value pairs such as environment variables configured using resource-env-ref elements.

JNDI locations configured using resource-ref elments.

Page 217

Part 5: Developer Guidance

G1080
Statement:

Adhere to the Web Services Interoperability Organization (WS-I) Basic Profile specification for Web service
environments.

Rationale:

Most of the COTS Web service products have already met this requirement. This is intended to cause a rejection
of the non-standard Web server.

The WS-I Basic Profile specification is available from the Web Services Interoperability Organization Web site:
WS-I Org Basic Prdfile.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Web Services Compliance

Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test: [61080.1]
Is the Web service product WS-I Basic Profile specification compliant?

Procedure:

Identify the Web service product being used, and verify through a literature search that it is WS-l Basic Profile
specification compliant.

Example:

None

Page 218

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

Part 5: Developer Guidance

G1082
Statement:

Use the document-literal style for all data transferred using SOAP where the document uses the World Wide Web
Consortium (W3C) Document Object Model (DOM).

Rationale:

The document-literal style requires defining the input and output parameters to a Web service as documents
that follow the W3C Document Object Model (DOM). The DOM acts as a contract between the producer and
the consumer of the Web service that is formal, well-defined, and rigorous. Validating the DOM against an XML
Schema Definition (XSD) can help resolve discrepancies in the interface.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Maintainability

Web Services Compliance

SOAP

Design Tenet: Open Architecture

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Scalability

Evaluation Criteria:

1) Test: [G1082.1]

Does the WSDL define input, output, or returned parameters as Documents that follow the W3C Document Object
Model (DOM)?

Procedure:

Review all WSDL files used to describe a Web service, and make sure they only pass documents. Document types
should be xsd: anyType.

Example:

None

Page 219

Part 5: Developer Guidance

G1083
Statement:

Do not pass Web Services-Interoperability Organization (WS-I) Document Object Model (DOM) documents as
strings.

Rationale:

Because of the relative simplicity of converting an XML document to a string, it is easy to pass an entire document
as a string rather than as an XML document. This can cause problems if the document contains tags that are
similar to the tags used in the SOAP. Passing it as an XML document ensures that the document is treated as a
single entity.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture
Web Services Compliance
Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Evaluation Criteria:

1) Test: [61083.1]
Does the WSDL define input, output, or returned parameters as strings?
Procedure:

Review all the WSDL files used to describe a Web service and make sure that they only pass documents, not strings.
Document types should be xsd: anyType.

Example:

None

Page 220

Part 5: Developer Guidance

G1084
Statement:

Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema Definition
(XSD) defined by the Community of Interest (COI).

Rationale:

Numerous COls are defining data specific to their needs. Many are capturing the data exchange requirements
through XML schemas. COI information service definitions identify the appropriate schema. SOAP Web service
implementations per the COI should be faithful to these requirements. Use of COIl schemas will minimize the risk to
interoperability.

For example, the Joint Air and Missile Defense (JAMD) COl is working in accordance with the DoD Network
Centric Data Strategy.

Referenced By:

SOAP

Interoperability

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
WSDL

Evaluation Criteria:
1) Test: [G1084.1]
Has the Program adopted COI (Community of Interest) data schemas?
Procedure:

Check the DoD Metadata Registry for the COIl schemas to compare to program WSDL references. Check code for
validation processing.

Example:

None

Page 221

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

Part 5: Developer Guidance

G1085
Statement:

Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD Programs.
Rationale:

A registered namespace permits unique identification and categorization of a Program which avoids name
collisions and conflicts. The DoD Net-Centric Data Strategy requires storing data products in shared spaces to
provide access to all authorized users and tagging these data products with metadata to enable discovery of
data by authorized users. The use of a unique registered namespace provides an absolute identifier to products
associated with a particular product and is an XSD schema requirement.

Referenced By:

Design Tenet: Open Architecture

Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

WSDL

Using XML Namespaces

Interoperability

Evaluation Criteria:
1) Test: [61085.1]
Does the Program have an assigned namespace in the DoD Metadata Registry?
Procedure:
Check the DoD Metadata Registry to determine whether program is associated with COI(s).
Example:

None

Page 222

Part 5: Developer Guidance

G1087
Statement:

Validate all Web Services Definition Language (WSDL) files that describe Web services.

Rationale:

Manually editing a WSDL file is error-prone, work-intensive, and hard to maintain. However, if the user wants to do
it, there is no way to detect a manually edited file from one that was auto generated. The important thing is not how
the WSDL file is generated but rather that the WSDL file is valid. It must be validated with a WSDL validator.

Note: Not all WSDL files that are generated and valid are necessarily interoperable.

Referenced By:

Web Services

WSDL

Design Tenet: Accommodate Heterogeneity
Design Tenet: Open Architecture

Design Tenet: Service-Oriented Architecture (SOA)
Insulation and Structure

Evaluation Criteria:

1) Test: [61087.1]

Can the WSDL file be validated?
Procedure:

Download a validation tool and test WSDL files.
Example:

Sample tools:

WS-I Organization: http://www.ws-i.org/deliverables/
workinggroup.aspx?wg=testingtools

Eclipse: http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-
home/main.html?rev=1.20

XMethods: http://xmethods.net/ve2/Tools.po

Pocket Soap: http://pocketsoap.com/wsdl/

Page 223

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools
http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-home/main.html?rev=1.20
http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-home/main.html?rev=1.20
http://xmethods.net/ve2/Tools.po
http://pocketsoap.com/wsdl/

Part 5: Developer Guidance

G1088
Statement:

Use isolation design patterns to define system functionality that manipulates Web services.

Rationale:

Insulating SOAP Web-service manipulation using standard abstraction patterns such as a proxy or adapter
insulates the software system from changes in the Web service interface and promotes maintainability.

Referenced By:

Web Services

SOAP

Design Tenet: Scalability

Design Tenet: Accommodate Heterogeneity
Insulation and Structure

Maintainability

Design Tenet: Open Architecture

Composeability

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1088.2]

Are Web service calls isolated in a single adapter or proxy object?
Procedure:

Check to see if all Web service calls are isolated to a single adapter or proxy object.
Example:

None

2) Test: [G1088.1]

Are Web service calls inside of the application code?
Procedure:

Check for proliferation of Web service calls inside an application.
Example:

None

3) Test: [G1088.3]

Are SOAP-client calls inside the application code?

Page 224

Part 5: Developer Guidance

Procedure:
Check to see if SOAP-client code is proliferated inside the application code?
Example:

None

Page 225

Part 5: Developer Guidance

G1090
Statement:

Do not hard-code a Web service's endpoint.

Rationale:

This causes unnecessary dependencies between the client code and the Web service that it uses.

Sometimes hard-coding may be unavoidable. For example, many tools provided by Web service vendors hard-
code the Web service's URL in the generated client-side helper classes.

Referenced By:

Design Tenet: Open Architecture

Maintainability

Web Services

Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61090.1]

Are there any hard-coded URLs in the client-side code?
Procedure:

Parse the client code looking for hard-coded URLSs.
Example:

The Java code samples below illustrate how this might be done. The first sample shows parameters that are hard-
coded; the second sample shows how parameters and Web service endpoints are insulated.

1. Hard-coded parameters:

// Sanple code that has hard-coded paraneters
/| before applying insulation
public static void main
(String[] args
) throws Exception
{ //The SQAP endpoi nt
String sSoapEndpoi nt
= "http://1ive. capesci ence. com 80"
+ "/ccx/ A rport\Wather";
AirportWatherdient nyProxy = null;
try
{ nyProxy
= AirportWatherCientFactory.create

(sSoapEndpoi nt);
System out. println
("Location: "
+ myProxy. get Location(args[0])

//rest of code renpved for brevity
} // End try
Catch (Exception exception)

Page 226

Part 5: Developer Guidance

{ Systemout.println("Error: " + exception);
} // End catch
};//end of main program

2. Insulated parameters and Web service endpoints
a. Property file - this code shows the property file itself:

c. Client sample code:

i mport java.io.*;
import java.rm.*;
import java.util.*;
import AirportWatherClient; // auto-generated SOAP
/1 client fromI|DE */
public class Weat her Proxy
i npl enent s ai rportWeat her Pr oxy
{
/1
//code renmoved for brevity
/1
publ i ¢ Weat her Pr oxy
(String propFileStr)
{ try
{ get EndPoi nt (propFileStr);
} /] End try
cat ch(Exception e)
{ // Handl e exception here
} /1 End catch
connect 2SOAP() ;
}/1 End constructor
/* public api's */
public String getLocation()
{ return |l ocation;
} // End getLocation
/1l Other public API's renmoved for brevity
private void get EndPoi nt
(String propsFile)
t hrows Exception
{ if (propsFile == null || propsFile.length() == 0)
{ throw new Exception
("SOAP EndPoi nt paraneter not defined");

Y} // End if
props = new Properties();
try

{ InputStreamis = new Fil el nput Streamn(propsFile);
props. |l oad(is);
is.close();
} /] End try
catch (Exception exception)
{ throw new Exception
("can't read props file " + propsFile);
} /1 End catch
Enurer ati on enum = props. propertyNanmes();
whil e (enum hasMor eEl ement s())
{ String endPointString = null;
String propName = enum next El ement ().toString();
if (propNane.equals (endPointString))
{ soapEndpoi nt = props.getProperty(propName);
br eak;
Y} /] end if
} /] End while
}/ 1 end get EndPoi nt
private void connect 2SQAP()
{ try
{ nyProxy
= AirportWatherd ientFactory.create
(soapEndpoint);
. . . Ilcode removed for brevity
} /] End try
catch (Exception exception)
{ Systemout.println

Page 227

Part 5: Developer Guidance

("Error connecting to SOAP server:
+ exception
DE
} // End catch
} // End connect 2SCAP
private Properties props = null;
private String propsFile = null;
private AirportWatherdient myProxy = null;
private String soapEndpoint = null;
private String location = null;
}/ 1 end Weat her Proxy
public class Wat her
{ private static Weat herProxy myWat her Proxy = null;
public static void nmain
(String[] args
) throws Exception
{ try
{ nyWeat her Proxy = new Weat her Proxy (args[0]);
} // End try
Catch (Exception exception)
{ throw new Exception
("can't connect to SOAP server");
} // End catch
System out.println
("Location:
+ nyWeat her Proxy. get Locat i on()
E
. //code deleted for brevity
}//end main
}/ 1 end Weat her

Page 228

Part 5: Developer Guidance

G1093
Statement:

Implement exception handlers for SOAP-based Web services.
Rationale:

SOAP exceptions result when there are connectivity problems or violations in the SOAP protocol between the
client and the server.

Referenced By:

Interoperability

Error Handling

Design Tenet: Accommodate Heterogeneity

SOAP

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Enterprise Service Management
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [61093.1]

Does the Web application client have exception handlers for SOAPExcept i ons.

Procedure:

Check to see that the Web application client has an exception block specifically for SOAPExcept i on.
Example:

None

2) Test: [G1093.2]

Does the Web application client test the SOAP response for a fault?

Procedure:

Verify the Web application client handles a true value returned from the r esponse. gener at edFaul t .
Example:

None

Page 229

Part 5: Developer Guidance

G1094
Statement:

Catch all exceptions for application code exposed as a Web service.

Rationale:

Any exception can reveal system internals and thus compromise security. Also, internal exceptions are not user
friendly.

Referenced By:

Maintainability

Error Handling

Design Tenet: Enterprise Service Management
Handle Exceptions

Evaluation Criteria:

1) Test: [61094.2]

Does each exposed Web method catch all possible runtime exceptions and re-throw a declared application runtime
exception?

Procedure:

Verify that each exposed Web method has an exception block that catches all possible exceptions and then re-throws
them as a declared application exceptions.

Example:

None

2) Test: [G1094.1]

Does each exposed Web method catch all possible exceptions and re-throw a declared application exception?
Procedure:

Verify that each exposed Web method has an exception block that catches all possible exceptions and then re-throws
them as a declared application exceptions.

Example:

None

Page 230

Part 5: Developer Guidance

G1095

Statement:

Use W3C fault codes for all SOAP faults.

Rationale:

Having predefined and accepted fault codes allows consumers to handle SOAP faults appropriately without prior
knowledge of custom fault codes.

Referenced By:

SOAP

Design Tenet: Open Architecture

Error Handling

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Maintainability

Design Tenet: Enterprise Service Management

Evaluation Criteria:
1) Test: [61095.1]
Does the Web application throw fault codes from the accepted list of fault codes?
Procedure:

Verify that each fault code thrown by the Web application is from the accepted list of SOAP fault codes defined by the
W3C.

Example:

None

Page 231

Part 5: Developer Guidance

G1101
Statement:

Use Web services to bridge Java EE and .NET.
Rationale:

The easiest and best way to bridge Java EE and .NET is to define a Web service.

There are other ways to bridge Java EE and .NET using COTS products. If used, these should follow the ANSI
Abstract Syntax Notation One (ASN.1) standard (http://asnl.elibel.tm.fr/en/standards/index.htm#asn1).

ASN.1 is a formal notation for describing data transmitted by telecommunications protocols. It applies regardless
of language implementation, physical representation of this data, application, and degree of complexity (http://
asnl.elibel.tm.fr/en/introduction/index.htm).

Referenced By:

.NET Framework

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
Interoperability

Evaluation Criteria:
1) Test: [61101.1]
Are Java and .NET files in the project?
Procedure:
Look for files with the .java, .class, .obj, .cs, .cc, or .c extensions existing with the source code.
Example:

None

Page 232

http://asn1.elibel.tm.fr/en/standards/index.htm#asn1
http://asn1.elibel.tm.fr/en/introduction/index.htm
http://asn1.elibel.tm.fr/en/introduction/index.htm

Part 5: Developer Guidance

G1118
Statement:

Localize CORBA vendor-specific source code into separate modules.

Rationale:

The general guidance is to minimize CORBA vendor-specific source code, while recognizing that vendor-specific
features are necessary in certain circumstances. However, isolating vendor-specific code reduces maintenance
effort.

Vendor capabilities tend to change more rapidly than CORBA-standard specifications. Experience shows that
vendor updates frequently require modification to application source code, due to changing vendor interface

conventions. These modifications impose vendor-version-specific constraints on the application, thereby
complicating maintenance.

Example

Encapsulating CORBA ORB operations

The following examples show how to encapsulate binding operations for a C++ ORB, and naming service
operations for a Java ORB.

C++ ORB binder template

The code below shows a sample template for binding to the C++ ORB. IONA's ORBIX was used in this
example.

/*
Server Bi nder. h (Tenpl ate)
this is a generic binder to ORBI X

*/
#i f ndef _BI NDER_H_
#define _BlI NDER H_
#i f ndef | OSTREAM H
#defi ne | OSTREAM H
#i ncl ude <i ostream h>
#endi f
#i f ndef STDLIB_H
#define STDLIB_H
#i ncl ude <stdlib. h>
#endi f
tenpl ate <cl ass SERVERNAME, cl ass VARPTR>
cl ass Bi nder
{ private:
char* server Naneg;
publi c:
Bi nder (char* svNane): server Name(svNane) {};
~Bi nder () {};
int bind(VARPTR* p)
{ int attenpts = 0, success = 0;
int maxtries = 5, retval = 0;
while ((attenpts < maxtries)
&& (!success)
)
{ ++attenpts;
cout << "Binding to server, attenpt "
<< attenpts
<< endl;
try
{ (*p) = SERVERNAME: : _bind();

Page 233

Part 5: Developer Guidance

cout << "Bound to server"
<< endl;
success = retval = 1;
} /1 End try
catch (CORBA:: Syst enmExcepti on &systenException)
{ cout << "SystenException, ServerBinder:: bind"
<< endl
<< syst enExcepti on;
success = 1,
retval = 0;
} // End catch SystenException
catch (...)
{ cout << "unknown Exception, ServerBi nder::bind"
<< endl;
success = 1,
retval = 0;
} // End catch all
} //end while
return retval;
} //end bind
} //end Binder
#endi f

Ada ORB binder template for C++

The code below shows a C++ template for binding to an Ada ORB. ORBexpress was used in this example.

/*
ada_bi nder. h (Tenpl at e)
this is a generic binder to ORBExpress

*/

#i fndef _ADA BI NDER H_
#define _ADA BI NDER H_
#i f ndef | OSTREAM H
#define | OSTREAM H

#i ncl ude <i ostream h>
#endi f

#i f ndef STDLIB_H
#define STDLIB H

#i nclude <stdlib. h>
#endi f

tenpl ate <cl ass SERVERNAME, cl ass VARPTR >
cl ass Ada_Bi nder

{ private:
char* adal or Stri ng;
publi c:
Ada_Bi nder

(char* iorString)

: adalorString (iorString)

{}

~Ada_Bi nder (){};

int bi ndToAda(VARPTR* p)

{ int attenpts = 0, success = 0;
int maxtries = 5, retval = 0;
while ((attenpts < maxtries)

&& (!success)

{ ++attenpts;
cout << "Binding to server, attenpt

<< attenpts
<< endl;
try
{ cout <<"adalorString:"
<< endl
<< adalorString
<< endl;

(*p) = SERVERNAME: : _bi nd(adal or String);
//can't use string_to_object in this version
/lit kills the ada IOR
I/ CORBA: : Obj ect _ptr nyptr
CORBA: : Or bi x. string_to_object
(adalorString);

Page 234

Part 5: Developer Guidance

/1 (*p) = SERVERNAME: : _narrow(nmyptr);
cout << "Bound to server" << endl;
success = retval = 1;
} /1 End try

catch (CORBA: : Syst emExcepti on& syst emExcepti on)
{ cout << "SystenException,
<< "AdaSer ver Bi nder: : bi nd"
<< endl
<< syst enkExcepti on;
success = 1;

retval = 0;
} /1 End SystenException
catch (...)

{ cout << "Unknown Excepti on,
<< " AdaServer Bi nder: : bi nd"

<< endl ;
success = 1;
retval = 0;

} // End catch all
} /1l end while
return retval;
} // end bind
} /1 end ADA_Bi nder
#endi f

Example
Naming service operations for a Java ORB

Java helper class

This example is a helper class, JavaNamingHelper.java, that encapsulates CORBA naming service
operations for all services to use. We used Java JDK 1.4 ORB to create this example.

inport java.util.*;

i nport org.ong. CORBA. *;

i nport org. ong. CORBA. ORB. *;

i nport org.ong. CORBA 2_3. ORB. *;

i nport org.ong. CosNani ng. *;

i nport org.ong. CosNani ng. Nanmi ngCont ext . *;

i nport org.ong. CosNani ng. Nami ngCont ext Package. *;
i nport CBRNSensors. JSLSCAD. *;

public class JavaNam ngHel per

{ static Nam ngContext nameSvc = null;

static org. ong. CORBA. Obj ect objref = null;
stati c JSLSCADSensor myCBRNSensor = nul | ;
static org. ong. CORBA. Obj ect myobj = null;
publ i ¢ JavaNani ngHel per ()

{

}

private static void showNanm ngCont ext
(org.ong. CORBA. ORB nyorb)

public static Nam ngContext getNam ngSvc
(org.ong. CORBA. ORB | cl or b,
String nameSvcNane

{ Nami ngContext |clNameSvc = null;
try
{ org. ong. CORBA. Obj ect nanmeSvcObj
= lclorb.resolve_initial _references
("NaneService");
[/l . . . other business |ogic renpved
I for brevity
} // End try
cat ch(org. ong. CORBA. COW FAl LURE cf)
{ . . . Il error code goes here
} // End cstch
catch (org. ong. CORBA. ORBPackage. | nval i dNanme i nval i dNane)

Page 235

Part 5: Developer Guidance

{ . . . Il error code goes here

} /1 End catch

catch (SystenExcepti on systenException)
{ . . ./l error code goes here

}
} // End get Nami ngSvc
public static org.ong. CORBA. Obj ect get Obj Fr onNanmeSvc
(org.ong. CORBA. ORB nyor b,
String target Sensor Name
)
{ . . . Il business logic goes here
} //end get Qbj Fr omNaneSvc
public static int setObj 2NameSvc
(org.ong. CORBA. ORB nyor b,
BasesSensor nySensor,
String target Sensor Name
)
{. . . I/l business |ogic goes here
}//end set Obj 2NanmeSvc
}; //end class JavaNam ngHel per

Java server implementation

The code below is a sample Java server implementation that uses the naming service helper class.

i nport java.io.*;

inport java.util.*;

i nport org.ong. CORBA. *;

i nport org. ong. CORBA. ORB. *;

i nport org.ong. CORBA 2_3. ORB. *;

i nport org.ong. Portabl eServer. *;

i nport org.ong. CosNani ng. *;

i nport org.ong. CosNani ng. Nanmi ngCont ext . *;

i nport org.ong. CosNani ng. Nam ngCont ext Package. *;
cl ass MyServer

{ public static Properties props;
public static ORB nyorb = null;
public static Nam ngContext naneSvc = null;
public static RootSensor nySensor = null;
public static String propertyFilePath = null;
public static final String MY_SENSOR NAME = " MYSENSCOR';
static public void main(String[] args)

{ // bhandl e argunents
Systemout. println(" CORBA Server starting...\n");
try
{ // Initialize the ORB.
nyorb = ORB.init(args, props);
/linstantiate servant and create ref
POA r oot POA
= PQOAHel per. narrow nmyorb. resolve_initial _references
(" Root PQA");
// rest of initialization code goes here

} // End try
catch (org. ong. CORBA. ORBPackage. | nval i dNanme i nval i dName)
{ . . . Illerror code goes here

} // End invalidNanme
/] other exception types to catch go here
catch (SystenException systenException)
{ Systemerr.println (systenException);
} // End systenException
/1 nam ng service hookup
JavaNam ngHel per . set Cbj 2NaneSvc
(nyorb, nySensor,
MY_SENSOR_NANMVE
DE
try
{ Systemout.println(" Ready to service requests\n");
nmyorb. run();
} // End try
cat ch(Syst enExcepti on systenExcepti on)
{ Systemerr.println (systenException);
} // End catch systenException

Page 236

Part 5: Developer Guidance

} // End static block
} /1 End MyServer

Java client implementation

The code below is a sample client implementation that uses the naming service helper class.

Referenced By:

Design Tenet: Open Architecture

CORBA

Maintainability

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61118.2]

Are any non-CORBA compliant CORBA:: objects declared or defined in the module?
Procedure:

Review the code for a service that can be used to obtain configuration.
Example:

None

2) Test: [G1118.1]

Does the module contain vendor names anywhere in code text?
Procedure:

Review the code looking for a service that can be used to obtain configuration.
Example:

None

Page 237

Part 5: Developer Guidance

G1119
Statement:

Isolate user-modifiable configuration parameters from the CORBA application source code.

Rationale:

Configuration parameters control the behavior of the CORBA ORB service environment and client/service
processes during startup, execution, and termination. This parameterization allows execution-time control
modification without having to rebuild, reinstall, or redeploy.

Configuration defines the state of the client-and-service environment throughout the lifetime of the processes
involved. This relates to considerations such as the allocation of threading and resources, POA policies, the
instantiation of servants and their invocations, failure and security behavior, connection management, quality

of service prioritization, and so forth. The point is that CORBA provides an extremely complex but flexible
environment for distributed computing interaction. Consequently, the designer requires flexible guidance to handle
this option-rich environment.

Configuration processes and their related parameters fall into two categories. The first involves configuration
matters, which are defined to be perpetually static by the system architecture. The second involves matters that
are intended to be modifiable by users.

The first category, immutable configuration settings, relates to fundamental underlying assumptions that are
foundational for the implementation. These are matters for which no user modification is ever intended as it
would lead to unspecified behavior. Consider the example of a service implementation that is programmed to

be single threaded. In this case, multi-threading controls are irrelevant and multiple instantiation would lead to
dangerous confusion. For immutable configuration parameters, localized and well-commented implementation in
the application source code is appropriate.

For user-modifiable configuration settings, there are two further by-design divisions. The first involves configuration
settings that are intended to be accessible by distributed processes. The second involves host-specific settings
which relate to resources locally available, for which remote access is not desired. These are discussed in the
related sublevel guidance

Referenced By:

CORBA
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Evaluation Criteria:
1) Test: [G1119.1]

See G1204.

Procedure:

Example:

2) Test: [G1119.2]

See G1205 .
Page 238

Part 5: Developer Guidance
Procedure:

Example:

Page 239

Part 5: Developer Guidance

G1l121
Statement:

Do not modify CORBA Interface Definition Language (IDL) compiler auto-generated stubs and skeletons.

Rationale:

The purpose of the IDL auto-generated stub and skeleton files is to provide a source code facility/mechanism
for the developer in a specific language to use the IDL-described object interface in that specific language. The
internal content of these files changes with the application's IDL modification, with IDL compiler-environment
configuration settings, and with vendor-product compiler and ORB upgrades. By design, these files are not
intended to be modified by the application developer. Developer modification of any auto-generated stub or
skeleton file will typically lead to very severe maintenance hazards and failed application rebuild results.

The stub files describe the language source-code interface from the client side. Their use involves including the
client stub header in the application's call invocation code.

The skeleton files describe the language source code interface from the service implementation side. Their

use involves including the skeleton header in the application's operator implementation code. Their use also
requires developer modification of a renamed clone of the auto-generated skeleton body file. These techniques are
described in every ORB vendor's programming reference manuals.

Referenced By:

Design Tenet: Open Architecture

Maintainability

Design Tenet: Service-Oriented Architecture (SOA)
CORBA

Evaluation Criteria:

1) Test: [61121.1]
Is any application code contained in the auto-generated code?
Procedure:

Inspect the auto-generated file creation/modification dates to verify that no tampering occurred after the IDL
compilation step in the build process.

Example:

The following examples are all based upon a single CORBA IDL interface.

Myldlinterface.idl

interface MyldlInterface
{
readonly attribute string version;
voi d stop();
void start();
string error();
}; /1 End MyldlInterface

ORBEXxpress compiler
Page 240

Part 5: Developer Guidance
The ORBEXxpress IDL compiler generates these files:

. myl dl I nt er f ace. h - Client-side stub header

. myl dl I nt er f ace. cxx - Client-side stub implementation

. Myl dl I nterface_s. h - Abstract servant header

. Myl dl I nterface_s. cxx - Abstract servant implementation
. MWl dl I nterface_i npl.h - Serverimplementation header

. MWl dl I nterface_i npl.cxx - Server implementation implementation

Note: The only files that should be edited are Myl dl I nterface_inpl.hand Myldl I nterface_i npl.cxx.
The IDL compiler checks for the existence of the implementation (i.e. _impl) files and will not overwrite them.

Myldlinterface_impl.cxx

/'l Generated for interface MyldlInterface
/1 in nyldlInterface.idl
#i nclude "MWl dl I nterface_inpl.h"
Ml dl I nterface_inpl:: Mldllnterface_inpl
(Portabl eServer:: POA* oe_poa,
const char* oe_object_id
) : POA_MldlInterface
(oe_object_id,
oe_poa
)
{ . . . I/ TODO add inplenentation code here
} // emd constructor
Ml dl I nterface_inpl:: Mldllnterface_inpl
(const MyldlInterface_inpl & obj)
POA_ M1 dl I nterface(obj)
{ . . . I/ TODO add inplenentation code here
} // End constructor
Ml dl Interface_inpl::~MldlInterface_inpl ()
{ . . . I/ TODO add inplenentation code here
} /1 End destructor
CORBA: : Char* Myl dl Interface_inpl::version
(CORBA:: Environment& _env)
{ return CORBA::string_dup(_version);
} // End version
void MyldlInterface_inpl::stop
(CORBA:: Environment& _env)
{ . . . I/ TODO add inplenentation code here
} /1 End stop
void MyldlInterface_inpl::start
(CORBA:: Environment& _env)
{ . . . I/ TODO add inplenentation code here
} // End start
CORBA: : Char* MyldlInterface_inpl::error
(CORBA:: Environment& _env)
{ CORBA::Char* result;
/1 TO DO add inplenmentati on code here
return result;
} // End error

Java JDK compiler

The Java JDK IDL compiler generates these files:
. Myl dl I nterface.java

. Ml dl I nterfaceHel per.java

Page 241

Part 5: Developer Guidance
. Ml dl I nterfaceHol der.java

. MWl dl I nterfaceQperations.java
. MWl dlInterfacePQA. java

. _Myldl I nterfaceStub.java
MyldlinterfacePOA.java

/**
* MyldlInterfacePQA java .
* Cenerated by the IDL-to-Java conpiler
* (portable), version "3.1"
* fromnyldlInterface.idl
*/
public abstract class MldlInterfacePOA
ext ends org. ong. Port abl eServer. Servant
i npl enents Myl dl I nterfaceOperations,
or g. ong. CORBA. port abl e. | nvokeHandl er
{ . . . I/l rest of the auto-generated code renpved for brevity
} // End MyldlInterfacePCA

MyldlInterfacelmpl.java

package nyldl | npl;
i mport org.ong. CORBA. *;
i nport org.ong. CORBA. ORB. *;
i mport org.ong. CORBA 2 3. ORB. *;
i nport org.ong. Portabl eServer. *;
public class MldlInterfacel npl
extends Ml dlInterfacePOA
{
private String strVersion;
private String errString;
public String version ()
{ . . . Il inplementation code goes here
return strVersion;
} /1 End version
public void stop ()
{ . . . Il inplementation code goes here
} /1 End stop
public void start ()
{ . . . Il inplementation code goes here
} /1l End start
public String error ()
{. . . Il inplenmentation code goes here
return errString;
} I/ End error
} /1 End MyldlInterfacel npl

Page 242

Part 5: Developer Guidance

G1123
Statement:

Use the Fat Operation Technique in IDL operator invocation.
Rationale:

This reduces the CORBA messaging overhead. The performance cost of network CORBA messaging is
determined by two factors: latency and marshaling rate. Call latency is the minimum cost of sending any message
at all. The marshaling rate is determined by the sizes of sending and receiving parameters and of return values.

In the situation of a large number of objects involving objects that hold a small amount of stat, the call latency

cost far exceeds the marshalling costs. Taking advantage of this reality, the "Fat Operation Technique" involves
constructing structure objects which hold an aggregation of related attributes, and using the resulting structures in
operation invocation parameters and returns. This amounts to transferring a larger amount of information with each
network transaction.

For more information, see "Advanced CORBA Programming with C++" by Henning & Vinoski, 1999 Addison
Wesley, Chapter 22.

Referenced By:

CORBA

Design Tenet: Scalability

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [61123.1]

Does the IDL contain function calls which have structure objects that are passed as parameters or returned from
operators?

Procedure:

Inspect the IDL file and manually check for parameters or returns using objects defined as structures, and verify that
they are passed from methods also declared in the IDL.

Example:

None

Page 243

Part 5: Developer Guidance

G1125
Statement:

Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.
Rationale:

These standardized tags or Metacards will be developed, maintained, and placed under configuration as
appropriate and will comply with the DDMS and COI guidance. These include specifications defining the tagging
for security classification and dissemination control. See the DoD Discovery Metadata Specification Web site
(http://metadata.dod.mil/mdr/irssDDMS/) for the current DDMS standards.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Make Data Visible

Design Tenet: Provide Data Management

Design Tenet: Open Architecture

Metadata Registry

Design Tenet: Accommodate Heterogeneity
Interoperability

Evaluation Criteria:
1) Test: [61125.1]
Has the Program documented the profile used for published data assets in accordance with guidance?
Procedure:
Check the DoD Metadata Registry to determine whether the program is associated with COI(s).
Example:

None

Page 244

http://metadata.dod.mil/mdr/irs/DDMS/

Part 5: Developer Guidance

G1127
Statement:

Use a UDDI specification that supports publishing discovery services.

Rationale:

UDDI provides a registration for services, and the OASIS UDDI 2.0 specification has become a standard method
for publishing discovery services.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Universal Description, Discovery, and Integration (UDDI)
Design Tenet: Accommodate Heterogeneity
Interoperability

Evaluation Criteria:

1) Test: [61127.1]

Are the Web services registered in a UDDI registry?
Procedure:

Verify the registration in the UDDI registry.
Example:

None

2) Test: [G1127.2]

Is the registry UDDI 2.0 or higher?

Procedure:

Determine if the particular UDDI registry is UDDI Version 2.0 or higher.
Example:

None

Page 245

Part 5: Developer Guidance

G1131
Statement:

Use industry standard Universal Description, Discovery, and Integration (UDDI) APIs for all UDDI inquiries.

Rationale:

There is a standard API that uses SOAP messages to communicate with the UDDI registry. To increase
compatibility and portability, use this API exclusively.

Referenced By:

Design Tenet: Open Architecture

Interoperability

Design Tenet: Service-Oriented Architecture (SOA)
Universal Description, Discovery, and Integration (UDDI)
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [61131.1]

Are all the interfaces to the UDDI registry made using the UDDI standard API1?

Procedure:

The standard API for UDDI is SOAP based. Requests and responses are passed using documents. Test the traffic

flow between the client and the UDDI registry for messages that are defined in the UDDI specification. Use standard
libraries to send and receive the messages (e.g., JUDDI for Java).

Checking for the use of packages like JUDDI does not require the application to be running.
Example:

The following is an example as provided in the UDDI API reference: http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm# Toc25137712 .

find_binding

The find_binding API call returns a bindingDetail message that contains zero or more binding Template structures
matching the criteria specified in the argument list.
Syntax

Syntax

Arguments

serviceKey This uuid_key is used to specify a particular
instance of a businessService element in
the registered data. Only bindings in the
specific businessService data identified by
the serviceKey passed will be searched.

Page 246

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137712
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137712

Part 5: Developer Guidance

maxRows This optional integer value allows the
requesting program to limit the number of
results returned.

findQualifiers This optional collection of findQualifier
elements can be used to alter the default
behavior of search functionality. See the
findQualifiers appendix for more information.

tModelBag This is a list of tModel uuid_key values
that represents the technical fingerprint
of a bindingTemplate structure contained
within the businessService specified by the
serviceKey value. Only bindingTemplates
that contain all of the tModel keys specified
will be returned (logical AND). The order of
the keys in the tModel bag is not relevant.

Returns

This API call returns a bindingDetail message upon success. In the event that no matches were located for the
specified criteria, the bindingDetail structure returned will be empty (i.e., it contains no bindingTemplate data.)
This signifies a zero match result. If no arguments are passed, a zero-match result set will be returned.

In the event of an overly large number of matches (as determined by each Operator Site), or if the number

of matches exceeds the value of the maxRows attribute, the Operator site will truncate the result set. If this
occurs, the response message will contain the truncated attribute with the value "true".

Caveats

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller within a
SOAP Fault. The following error number information will be relevant:

E_invalidkeyPassed This signifies that the uuid_key value passed
did not match with any known serviceKey or
tModelKey values. The error structure will
signify which condition occurred first, and the
invalid key will be indicated clearly in text.

E_unsupported This signifies that one of the findQualifier
values passed was invalid. The invalid
qualifier will be indicated clearly in text.

Page 247

Part 5: Developer Guidance

G1132
Statement:

Implement the data tier using commercial off-the-shelf (COTS) relational database management system
(RDBMS) products that implement the SQL standard.

Rationale:

COTS RDBMS products are technically mature, and their capabilities are continually expanding (to include
capabilities such as row-level locking, stored procedures, triggers, and high-level language interfaces). Moreover,
there is a large technical community able to develop and maintain data systems based on these products. It is
likely that a COTS RDBMS will provide many of the data tier capabilities a developer requires.

Referenced By:

Design Tenet: Open Architecture

Maintainability

Design Tenet: Enterprise Service Management
Database Implementations

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity
Interoperability

Evaluation Criteria:

1) Test: [61132.1]

Is the proposed COTS RDBMS product a readily available and supportable COTS product that implements the SQL
standard?

Procedure:

Page 248

Part 5: Developer Guidance

G1l141
Statement:

Use standard data models developed by Communities of Interest (COI) as the basis of program or project data
models.

Rationale:

Standard data models are under development in many areas of the DoD and will be stored in and made available
from DoD metadata repositories. The use of these models or portions thereof supports interoperability among
applications. The C2IEDM data model, used in the Command and Control area, is an example of one of these
standard data model development efforts.

Referenced By:

Database Development

Design Tenet: Service-Oriented Architecture (SOA)
Reading/Writing Objects within a DDS Domain
Design Tenet: Accommodate Heterogeneity
Interoperability

Data Modeling

Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [61141.2]

If the system is a command-and-control application, has preference been given to the use of the Command & Control

Information Exchange Data Model (C2IEDM) rather than locally defined values?

Procedure:

Examine the system data model and verify that the C2IEDM data model has been incorporated.
Example:

None

2) Test: [G1141.1]

Have standard data models been considered for use in the system?

Procedure:

Determine whether standard DoD data models exist for the technical areas accommodated in the system
requirements. Verify that data model the developed for the application accommodates the use of these data models.

Example:

None

Page 249

Part 5: Developer Guidance

G1144
Statement:

Develop two-level database models: one level captures the conceptual or logical aspects, and the other level
captures the physical aspects.

Rationale:

There are a number of modeling tools available that support entity-relationship diagram (ERD) development.
Developers can use these tools to create conceptual/logical models that are independent of the DBMS in

which the system is implemented and to develop the physical models that are translated directly into data
definition language (DDL), the SQL code used to create the database. Using a conceptual/logical model permits
implementation or reuse of a complex ERD on multiple DBMS products.

Referenced By:

Design Tenet: Open Architecture

Reusability

Data Modeling

Database Development

Design Tenet: Service-Oriented Architecture (SOA)
Composeability

Evaluation Criteria:
1) Test: [G1144.1]
Have separate conceptual/logical and physical models been developed?
Procedure:
Verify the presence of a conceptual/logicalmodel0 and a physical model.
Example:

None

Page 250

Part 5: Developer Guidance

G1146
Statement:

Include information in the data model necessary to generate a data dictionary.

Rationale:

A data dictionary is an integral part of every system including databases. A description of each data item and
the units in which the contents are measured are essential. Data modeling tools provide a mechanism for storing
information necessary to produce a data dictionary.

Referenced By:

RDBMS Internals

Reading/Writing Objects within a DDS Domain
Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Evaluation Criteria:
1) Test: [G1146.1]
Does the data model include description information?
Procedure:
Examine the physical data model.
Example:

None

Page 251

Part 5: Developer Guidance

G1147
Statement:

Use domain analysis to define the constraints on input data validation.

Rationale:

Domain analysis is an integral part of any data system including databases. Domains describe the set or range of
values that are acceptable for a specific data item. These include, at a minimum the following:

. Data type
. Precision

. Minimum

. Maximum
. Length

These values are used to validate the data.

In the database, the range checking is done via check constraints on the data item. These check constraints are
generated from the physical data model as part of the DDL.

Referenced By:

Database Development

Data Modeling

Design Tenet: Service-Oriented Architecture (SOA)
Reading/Writing Objects within a DDS Domain
Maintainability

Validate Input

Evaluation Criteria:
1) Test: [61147.1]
Does the data model include include constraints derived from domain analysis?
Procedure:
Examine the physical data model.
Example:

None

Page 252

Part 5: Developer Guidance

G1148
Statement:

Normalize data models.

Rationale:

Normalization is a central tenet of relational database theory. It is also part of OOA.

A database should usually be normalized to at least third normal form. Although there are seven normal forms,
normalization beyond third normal form is rarely considered in practical database design.

Objects developed in the absence of data normalization are prone to unnecessary complexity required to keep
multiply copies of data.

Referenced By:

Reading/Writing Objects within a DDS Domain
Database Development

Maintainability

Data Modeling

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:
1) Test: [G1148.1]
Is the database design in third normal form?
Procedure:
Examine the conceptual/logical data model.
Example:

None

Page 253

Part 5: Developer Guidance

G1151
Statement:

Define declarative foreign keys for all relationships between tables to enforce referential integrity.

Rationale:

Foreign Key constraints enforce referential integrity. The principle of referential integrity requires that the foreign
key values of a child table are either null or match exactly those of the primary key in the parent table.

Referenced By:

Database Development

Design Tenet: Service-Oriented Architecture (SOA)
RDBMS Internals

Maintainability

Evaluation Criteria:

1) Test: [G1151.1]
Have foreign-key constraints been incorporated into the database?
Procedure:

Examine the database to determine whether foreign-key constraints have been included in the database creation
scripts and created in the database.

Example:

None

Page 254

Part 5: Developer Guidance

G1153
Statement:

Separate application, presentation, and data tiers.

Rationale:

Separation into tiers allows for the separate maintenance of each tier as long as the interface between tiers does
not change. It also allows for multiple implementations of a layer to meet
different requirements. This supports technology refresh and certain requirements changes.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Maintainability

Design Tenet: Scalability

RDBMS Internals

Composeability

Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [61153.1]

Does the program, project or initiative architecture support clear boundaries between application layers, e.g. data,
presentation, and business logic layers.

Procedure:

Examination of the program, project or initiative architecture and evaluate the degree to which it supports clear
boundaries between applications layers such as data, and presentation layers.

Verify that the system design accommodates a multi-tier architecture.
Example:

The use of web services is one means of separating the presentation layer from business logic and data layers.

Page 255

Part 5: Developer Guidance

G1154
Statement:

Use stored procedures for operations that are focused on the insertion and maintenance of data.

Rationale:

Current software design methodologies and architectures call for the implementation of an n-tiered architecture
with business rules in the middle tier and data stored in a separate data tier. When multiple applications access
a common database, however, the rules may be best located at the data-tier level. Otherwise, changes in one
application would have to be coordinated across all applications.

Referenced By:

RDBMS Internals

Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Design Tenet: Make Data Trustable

Evaluation Criteria:

1) Test: [G1154.1]

Are database triggers used?

Procedure:

Check for stored procedures that are triggered on insertion, deletion, and update events.

Example:

CREATE TRI GGER Per sonCheckAge
AFTER | NSERT OR UPDATE OF age
ON Per son
FOR EACH ROW
BEG N
I F (:new. age < 0) THEN
RAl SE_APPL| CATI ON_ERROR
(-20000,
'no negative age all owed'

END | F;
END; .

Page 256

Part 5: Developer Guidance

G1155
Statement:

Use triggers to enforce referential or data integrity, not to perform complex business logic.
Rationale:

Triggers are fired on events. Current software design methodologies and architectures call for the implementation
of an n-tiered architecture with business rules in the middle tier and data stored in a separate data tier.
Implementing business logic in triggers, as well as in the middle tier, violates this concept.

Referenced By:

Composeability

Design Tenet: Make Data Trustable

Design Tenet: Service-Oriented Architecture (SOA)
RDBMS Internals

Design Tenet: Enterprise Service Management

Evaluation Criteria:
1) Test: [61155.1]
Has business logic been incorporated into database triggers?
Procedure:

Examine the database trigger code to determine whether business logic or calls to stored procedures incorporating
business logic have been coded into them.

Example:

None

Page 257

Part 5: Developer Guidance

G1190
Statement:

Use a build tool.

Rationale:

A build tool allows for the encapsulation of building instructions into machine-readable files or sets of files. The
instructions can be successfully and consistently repeated.

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Service-Oriented Architecture (SOA)
Automate the Software Build Process

Evaluation Criteria:
1) Test: [61190.1]
Does the program or project use a build tool?
Procedure:
Identify which build tool the program or project is using.
Example:

None.

Page 258

Part 5: Developer Guidance

G1202

Statement:

Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).

Rationale:

The CORBA Basic Object Adapter (BOA) was the CORBA Version 1 specification for the client-server object
capability. The BOA specification was found to be so incomplete that vendor-specific interpretations were
required for operable implementation. In CORBA Version 2, the Portable Object Adapter (POA) was significantly
more complete and flexible. In the current marketplace, POA implementations are standard and, in quality
implementations, are not vendor-specific. Consequently, using POA eliminates one significant area of vendor-
specific coding.

BOA POA
. Focuses on CORBA server . Services for lifecycle management
implementations and not CORBA object
implementations . Abstract layer between ORB and object
. Naming convention issues on server side . Standard, portable interface for

communicating with ORB runtime
. Tightly coupled to ORB implementation
. Two servant incarnation styles
. Non-standardized way to connect to ORB

. Four activation models for server
processes

Referenced By:

Interoperability

Maintainability

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
Composeability

CORBA

Evaluation Criteria:
1) Test: [61202.1]
Does any CORBA application code reference the CORBA: : BOA identifier.

Procedure:

Review the code for the use of the CORBA: : BOA identifier.

Page 259

Part 5: Developer Guidance
Example:

BOA Coding Example
Client Side

The code below shows a C++ CORBA client BOA initialization for the ORBIX ORB. Other ORB vendors may
have different initialization sequences.

int main
(int argc,
char **argv
)
{ MyServer_var MyVar;
CORBA: : ORB_ptr nyOrbPtr
= CORBA:: ORB_init(argc, argv,"Obix");
try
{ // The default is the l|ocal host:
MyVar = MyServer:: _bind(": Server Nane") ;
} /] End try
catch (CORBA: : Syst enException &sysEx)
{ cerr << "Unexpected system exception" << endl;
cerr <<&sysEx;
exit(1);
} // End CORBA: : Syst enException
catch(...)
{ /] an error occurred while trying
/1 to bind to the grid object.
cerr << "Bind to object failed" << endl;
cerr << "Unexpected exception " << endl;
exit(1);
} // End catch ...
} // End nmin

Server Side

Use the code below as a model. This example shows a C++ CORBA server BOA init for the ORBIX ORB. For
BOA, other ORBS will have a different initialization sequence.

try
{ M/bject::nyOrb_
= CORBA: : ORB_ini t(argc, argv, "Obix");
MyQbj ect : : myboa_
= MObject::nyOb _->BOA init(argc, argv, "Obix_BOA");
} I/ End try
catch (CORBA: : Syst emExcepti on &sysEx)
{ //sone exception handling code
} // End catch
try
{ NoelLogger Cf g:: nyboa_->i npl _i s_ready(" M/Servi ceNane",
CORBA: : ORB: : | NFI NI TE_TI MEQUT) ;
} I/ End try
catch (CORBA: : Syst emExcepti on &sysEx)
{ //exception handling code

}

POA Coding Example
Client Side

This example shows a C++ CORBA client POA init for the ORBIX ORB. For BOA, other ORBS will have a
different initialization sequence.

Page 260

Part 5: Developer Guidance

int main
(int argc,
char **argv
)
{ CORBA::ORB_ var nmyOrb = CORBA:: ORB_init(argc, argv);
try
{ CORBA:: hj ect _var obj
= ... Il however you get the object reference
if(CORBA: :is_nil (obj))
{ cerr << "Ni| object reference" << endl;
t hrow O;
} // End if
} /1 End try
catch (CORBA: : Syst emExcepti on &sysEx)
{ cerr << "Unexpected system exception" << endl;
cerr <<&syskEx;

exit(1);

} // End catch CORBA:: SystenExcepti on

catch (...)

{ cerr << "Unexpected system exception" << endl;
exit(1);

} // End catch ...
nyi nt erface: : myobj ect _var nyvar;

try
{ myvar = nyinterface:: myobject:: _narrow(obj);
} /1 End try

catch (CORBA:: Syst enmExcepti on &sysEx)
{ cerr << "Unexpected system exception" << endl;
cerr <<&syskEx;
exit(1);
} /1 End catch CORBA:: SystenExcepti on
} // End main

Server Side

Use the code below as a model. This example shows a C++ CORBA server POA init for the ORBIX ORB. For
POA, other ORBS will have a different initialization sequence.

int main
(int argc,
char *argv[]
)
{ try
{ /] initialize the ORB
orb_var orb = CORBA::ORB_init(argc, argv, "Obix");
/'l obtain an object reference for the root PCA
obj ect _var obj
= orb->resolve_initial _references ("RootPQA");
POA var poa = POA:: _narrow(obj);
/'l incarnate a servant
My_Servant _I npl servant;
/Il lmplicitly register the servant with the root POA
obj = servant._this ();
//start the POA listening for requests
poa -> the_POAManager ()->activate ();
//run the orb's event | oop
orb->run ();
} /1 End try
catch (CORBA: : Syst emExcepti on &sysEx)
{ /'l sone exception handling code
} /1 End catch
} // End main

Page 261

Part 5: Developer Guidance

G1203
Statement:

Localize frequently used CORBA-specific code in modules that multiple applications can use.

Rationale:

In a family of applications, similar patterns of CORBA Object Request Broker (ORB) invocation sequences
frequently arise. This is common in service object initialization, policy association, discovery, binding, and release
handling. Implementing this functionality in a utility library paradigm localizes the code to reduce maintenance and
facilitate extensibility, and assures consistency across the family of applications.

Referenced By:

Maintainability

Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)
Reusability

Extensibility

CORBA

Design Tenet: Open Architecture

Interoperability

Evaluation Criteria:

1) Test: [61203.2]

Do the standard object policy association CORBA invocations occur in more than one module?
Procedure:

The presence of "CORBA: : Pol i cyLi st " in C++ indicates policy presence.

Example:

None

2) Test: [G1203.1]

Do the standard object initialization CORBA invocations occur in more than one module?
Procedure:

The presence of "CORBA: : ORB_var " or "CORBA: : ORB_i ni t " in C++ indicates ORB initialization. The presence of
"CORBA: : Obj ect _var"in C++ indicates ORB access.

Example:

None

Page 262

Part 5: Developer Guidance
3) Test: [G1203.3]

Do the standard object policy association CORBA invocations occur in more than one module?
Procedure:

The presence of "CORBA: : Pol i cyLi st " in C++ indicates policy presence.

Example:

None

4) Test: [G1203.4]
Do the standard object discovery CORBA invocations occur in more than one module?
Procedure:

The presence of "Resol ve_Nani ngSer vi ce() "in C++ indicates intended access to one of CORBA's discovery
capabilities.

Example:

None

5) Test: [G1203.5]

Do the standard object binding and release CORBA invocations occur in more than one module?

Procedure:

The presence of " : _narrow(obj .in())"or"CORBA: : i s_nil ("in C++ indicates activity associated with
obtaining and validating an object binding to a legitimate reference. The presence of "CORBA(r el ease) (" in C++
indicates intended release of a CORBA-bound object reference.

Example:

None

Page 263

Part 5: Developer Guidance

G1204
Statement:

Create configuration services to provide distributed user control of the appropriate configuration parameters.

Rationale:

For user-modifiable configuration settings that are intended to be accessible by distributed processes at runtime,
the appropriate mechanism for implementation involves CORBA services. The first form is a network service to be
invoked as a client by the target system application at initialization. This can support a consistent, network-wide
distribution of startup parameters. The second form is a service implemented by the target application which allows
communication to the application during execution (after startup). This allows real-time configuration changes for
matters such as Portable Object Adapter (POA) instantiation threading policies to address load management.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity

Design Tenet: Open Architecture

Maintainability

Design Tenet: Decentralized Operations and Management
CORBA

Evaluation Criteria:

1) Test: [61204.1]

Is a service defined in the IDL to obtain the configuration parameters?
Procedure:

Review the code for a service that can be used to obtain configuration.
Example:

The following code is an example of a CORBA server that instantiates a configuration service. The service manages
the individual configuration parameters for the servers on the ORB.

Ada Example

CORBA. ORB. | | OP_Engl i sh;

pragma El aborate_ Al | (CORBA. ORB. || OP_Engl i sh);

with CORBA ;

wi t h CORBA. BOA ;

with CORBA. ORB ;

wi th CORBA. Obj ect ;

wi th Configuration.|npl

wi th Confi guration. Hel per ;

wi t h Ada. Exceptions ;

with Ada. Text 10 ;

with ny_CORBA ;

wi th Event _Ada_API

procedure Configuration_Server is
- required for O bExpress

First_Variable : CORBA. ORB. Life_Span ;

- declare the object instance

Page 264

Part 5: Developer Guidance

Configuration_Qbject : Configuration. Ref ;
--variabl es needed for ior witing
No_Ti neout : constant := 0.0;
Config_Nane : constant String
;= Configuration. Hel per. Si npl e_Nane ;
Config_Host : Corba. String ;
Config_Port : Corba.String ;
begin -- Configuration_Server
-- create (and initialize) the object
-- config file is read and the port needed
-- isin there
Conf i gur ati on_QCbj ect
;= Configuration.|npl.Create(Config_Nane) ;
GET_HOSTNAME:
begin
Conf i g_Host
;= Configuration. Get_String
(Self => Configuration_Object,
Name => Corba. To_Corba_String
("Local _Host _Shortnanme")
)
exception -- GET_HOSTNAME
when ot hers =>
Ada. Text _| O Put _Li ne
("ERROR M ssing paraneter”
& "<Local _Host _Short name> "
& "in the config_paraneters.txt file."
)
end GET_HOSTNAME;
GET_CS_PORT:
begin
Confi g_Port
;= Configuration. Get_String
(Self => Configuration_Object,
Name => Corba. To_Corba_String
("Config_Service_Port")
)
Exception -- GET_CS_PORT
when ot hers =>
Ada. Text _| O Put _Li ne
("ERROR M ssing paraneter "
& "<Config_Service_Port> "
& "in the config_paraneters.txt file."
)
end GET_CS_PORT;
Ada. Text _I O Put _Li ne
("Host =>"
& Corba. To_St andard_Stri ng(Confi g_Host)
& " Port =>"
& Corba. To_Standard_String(Config_Port)
)
--timeout 0 so we can wite | OR out
CORBA. BOA. | npl _I s_Ready
(Tinme_Qut => No_Ti meout,
Server _| nstance_Nanme => Confi g_Nane,
Li sten_On_Endpoi nts =>
"tep: /"
& Corba. To_St andard_Stri ng(Confi g_Host)
& "
& Corba. To_Standard_String(Config_Port)

-- HERE | S WHERE CODE FOR THE | OR TO BE
-- USED ON THE C++ ORB
-- get the IOR and wite it to disk
nmy_CORBA. Wite_|OR To_File

(Server_Name => Config_Nane,

Server_Ref =>
CORBA. Obj ect . Ref (Confi gurati on_QObj ect)

)
READY_BLOCK:
begin

-- notify subscribers of availability

-- of configuration paraneters via the

Page 265

Part 5: Developer Guidance

-- event service
Event _Ada_API . Send
(Channel _Nanme => "Config_Channel ",
Event => "Configuration Service Ready."
)
Exception - READY_BLOCK
when ot hers =>
Ada. Text _1 O Put _|ine
("Configuration_Server
& Exception sending ready signal."

end READY_BLOCK;
Ada. Text _1 O Put _|ine
("Configuration_Server
& Configuration Service Ready."
)i
CORBA. BOA. | npl _I s_Ready
(Tinme_Qut => CORBA. I nfinite_Ti meout,
Server _| nstance_Nanme => Confi g_Nanme
) &
exception -- Configuration_Server
when X_Qther: others =>
Ada. Text _1 O Put _|ine
("Configuration_Server
& Ada. Excepti ons. Excepti on_Name(X_Ct her)
)i

end Configuration_Server

C++ Example

The following code snippets depict a C++ server that instantiates a version collection service for an About box.

It uses the IORs from the servers on the Ada ORB via the IOR files, and invokes those objects to get version
information. It uses the utility templates for binding. It exemplifies the approach described in Encapsulate CORBA
ORB operations for C++.

Note: This was done on the ORBIX C++ and Ada ORBs.

#i ncl ude <i ostream h>

#i ncl ude <rw cstring. h>

#i fndef _STDIO H

#i ncl ude <stdio. h>

#endi f

#i fndef _STRING H

#i ncl ude <string. h>

#endi f

#ifndef _STDLIB H

#i ncl ude <stdlib. h>

#endi f

#i fndef _ASSERT H

#i ncl ude <assert. h>

#endi f

/1 Include files for all the objects desired for
/1 collecting version infornmation

/1 Ada configuration service

#i f ndef configuration_hh

#i ncl ude <confi guration. hh>

#endi f

/1 include files for other desired services;
/'l renoved for brevity

/1 other support objects and utilities
#i fndef _CORBA UTILS _

#i ncl ude <corba_utils. h>

#endi f

#ifndef __LOG APl _H

#i ncl ude <l og_api . h>

#endi f

#ifndef _VERSI ON_AGENT_GLOBALS H_

Page 266

Part 5: Developer Guidance

#i ncl ude "version_agent _gl obal s. h"

#endi f

const RWCString Version_Agent_i:: MSG VERSI ON_NOT_FOUND_
= "Version Info. not found for ";

const CORBA:: ULong Version_Agent _i:: MAXSERVERS
= 12;

Versi on_Agent _i:: Version_Agent _i(): theVersionlnfoPtr_(0)

{ theVersionlnfoPtr_
= new versi onl nf oType(MAXSERVERS) ;
t heVer si onl nf oPt r _- >l engt h(MAXSERVERS) ;
} // End constructor
Ver si on_Agent _i :: ~Versi on_Agent _i ()
{ // Do nothing
} // End destructor
/**
FUNCTI ON NAME: cr eat eVer si ons
PURPOSE: hel per function that gets the version info
| NPUT:
QUTPUT:
**/
voi d Version_Agent _i::createVersions ()
{ char *iorString;
int bBindCk = 0;
int versionCnt = O;
ver si onl nfoType* rl = theVersionlnfoPtr_;
CORBA: : ULong MAXSERVERS Ver si on_Agent _i : : MAXSERVERS _;
/'l server variables for all the objects desired
/1 for collecting version information
/! nost declarations renoved for brevity
Event Servi ceFactory_var es_var;
/1 Ada configuration service
Confi guration_var cfg_var;
/'l === load the versions of the individual conponents
/'l Code for other services renoved for brevity
/1 This is an ADA service using the IOR string
{ //****************** Conflg SerVI Ce khkkkhkkkkhkkkhkkkhkkk*k
| ogMsg
("get config service version",
Log_Api : : DEBUG 1_MsG

DE

RWCString errMsg
(Version_Agent _i:: MSG_VERSI ON_NOT_FOUND_. dat a()
) .

errMsg. append ("Configuration Service");
/1l here we get the IOR fromthe ADA orb using
/'l the hel per nethods
iorString = getlorFile("Configuration");
//tenplate class to hide binding issues to the ADA ORB
If (iorString)
{ Ada_Bi nder < Configuration,
Configuration_var > bo (iorString);
bBi ndCk = bo. bi ndToAda(&fg_var) ;
/'l get the version info and load it

If (bBi ndCk
& & !'(CORBA: :is_nil(cfg_var))
)
{ try
{ char* str = cfg_var->version();
if (str)

{ (*theVersionlnfoPtr_)[versionCnt]
= CORBA: :string_dup(str);

del ete str;
} // End if
el se

{ (*theVersionlnfoPtr_)[versionCnt]
= CORBA: :string_dup(errMsg.data());
} // End el se
} // End try
catch(...)
{ (*theVersionlnfoPtr_)[versionCnt]
= CORBA: :string_dup(errMg.data());
} // End catch
cfg_var->_cl oseChannel ();
} /] End if
el se

Page 267

Part 5: Developer Guidance

{ (*theVersionlnfoPtr_)[versionCnt]
= CORBA: :string_dup(errMg.data());
} // End el se
if(iorString)
{ free (iorsString);
iorString = NULL;

} /] End if
} //endif iorstring
el se

{ (*theVersionlnfoPtr_)[versionCnt]
= CORBA: :string_dup(errMg.data());
} // End else
I/l eaving scope rel eases the corba object
} //end cfg_svf
bBi ndCk = 0;
ver si onCnt ++;
assert (versionCnt <= MAXSERVERS) ;
} // End createVersions
/**
FUNCTI ON NAME: start
PURPOSE: handl e startup specific stuff
| NPUT:
QUTPUT:
**/
voi d Version_Agent_i:: start
(CORBA:: Environnent & T_env
) throw (CORBA: : Syst enExcepti on)
{ //get all the version info
createVersions();
} // End start
/**
FUNCTI ON NAME: st op
PURPOSE: handl e stop specific stuff
| NPUT:
QUTPUT:
**/
voi d Version_Agent_i:: stop
(CORBA:: Environnent & T_env
) throw (CORBA: : Syst enExcepti on)
{ /! Release info
/1 Let CORBA tine out the service
| ogMsg ("stop received");
Ver si onAgent d obal s: : nyboa- >set NoHangup (0);
Ver si onAgent G obal s: : nyboa- >deacti vat e_i npl
("Version_Agent");
} //end version inpl

Page 268

Part 5: Developer Guidance

G1205
Statement:

Use non-source code persistence to store all user-modifiable CORBA service configuration parameters.

Rationale:

For user-modifiable configuration settings that are host-specific and that are not intended to be accessible by
distributed processes at runtime, the appropriate mechanism for implementation involves local persistent storage.
The appropriate form of local storage depends on the local host architecture and may be file- or host-DBMS
oriented. It is important that such parameters are not stored in source code that requires build processes for
modification.

For SOA services, configuration parameters relating to invoked services should not be service-host-specific at the
invoking client application.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Maintainability

CORBA

Evaluation Criteria:
1) Test: [61205.1]
Are there any user-modifiable configuration parameters hard coded in the non-auto-generated files?
Procedure:
Inspect the code for constant strings or constants that contain configuration parameters.
Example:

None

Page 269

Part 5: Developer Guidance

G1208
Statement:

Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.

Rationale:

By not replacing old methods of objects, library functionality consumers can continue to operate and not be forced
to upgrade.

Referenced By:

Public Interface Design

Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
Maintainability

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61208.1]
Are methods that are being replaced marked with deprecated tags?
Procedure:

Check revision history to make sure that methods are deprecated and not removed unless they have expired.
"Expired" means that they have passed the expected shelf life, as defined by the project standards or other standards
documentation.

Example:

None

2) Test: [G1208.2]

Do new methods being added contain information on methods they are replacing?

Procedure:

Check to make sure newly added methods contain information and rationale on the methods they are replacing.
Example:

None

Page 270

Part 5: Developer Guidance

G1209
Statement:

For Java, use JDK logging facilities.

Rationale:

Java has a built-in logging framework that is portable across platforms, projects, and installations.

Referenced By:

Interoperability

Design Tenet: Service-Oriented Architecture (SOA)
Java EE Environment

Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
Design Tenet: Enterprise Service Management

Evaluation Criteria:
1) Test: [61209.1]
Does the application use anything other than the specified logging frameworks?
Procedure:
Check for use of logging frameworks other than the JDK.
Example:

None

Page 271

Part 5: Developer Guidance

G1210
Statement:

For .NET, use Debug and Trace from the Syst em Di agnhosti ¢cs namespace.

Rationale:

.NET has a built-in logging framework that is portable across .NET projects and installations.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Interoperability

Design Tenet: Enterprise Service Management
Design Tenet: Open Architecture

Design Tenet: Service-Oriented Architecture (SOA)
.NET Framework

Evaluation Criteria:
1) Test: [61210.1]
Does the application use anything other than the specified logging frameworks?
Procedure:
Check for use of logging frameworks other than Syst em Di agnosti cs.
Example:

None

Page 272

Part 5: Developer Guidance

G1213
Statement:

Provide an architecture design document.

Rationale:

An architectural design document provides evaluators with a roadmap of the application. This helps evaluators
verify that the application follows guidance such as using the Model View Controller model.

Referenced By:

Design Tenet: Open Architecture
Public Interface Design
Maintainability

Evaluation Criteria:
1) Test: [61213.1]
Do the project deliverables for evaluation include a document that contains the architectural design of the application?
Procedure:
See if an architectural design document exists.
Example:

None

Page 273

Part 5: Developer Guidance

G1214
Statement:

Provide a document with a plan for deprecating obsolete interfaces.

Rationale:

This information allows users to phase out deprecated interfaces. For instance, Sun plans to maintain backward
compatibility for the JDK for seven years. This means developers can count on deprecated methods not being
removed for seven years.

Referenced By:

Design Tenet: Open Architecture
Maintainability
Public Interface Design

Evaluation Criteria:
1) Test: [G1214.1]
Do the project deliverables for evaluation include a document that contains a plan for deprecating obsolete interfaces?
Procedure:
See if a document with a plan for deprecating obsolete interfaces exists.
Example:

None.

Page 274

Part 5: Developer Guidance

G1215
Statement:

Provide a coding standards document.

Rationale:

The standards ensure a consistent code base. A coding standards document defines rules to keep code readable,
maintainable, and secure.

Referenced By:

Public Interface Design

Design Tenet: Open Architecture
Apply Secure Coding Standards
Maintainability

Evaluation Criteria:
1) Test: [61215.1]
Do the project deliverables for evaluation include a coding standards document?
Procedure:
See if a coding standards document exists.
Example:

None

Page 275

Part 5: Developer Guidance

G1216
Statement:

Provide a software release plan document.

Rationale:

The release plan document ensures that there is a formal process for releasing the software. It includes a
description of how to acquire the software from the software configuration management (SCM) repository and how
to build, label, and release it.

Referenced By:

Public Interface Design
Maintainability
Design Tenet: Open Architecture

Evaluation Criteria:
1) Test: [G1216.1]
Do the project deliverables for evaluation contain a release plan document?
Procedure:
See if a software release plan exists.
Example:

None

Page 276

Part 5: Developer Guidance

G1217
Statement:

Develop and use externally configurable components.

Rationale:

To be portable and to accommodate reuse, components must be configurable using external descriptors usually
defined in XML. Examples of things that might need to be configured include the following:

. A data source for the component to obtain a Java Database Connection (JDBC)
. The location of a service with which the component must communicate

. The location of implementation classes that the component uses

Referenced By:

Implement a Component-Based Architecture
Design Tenet: Accommodate Heterogeneity
Design Tenet: Service-Oriented Architecture (SOA)
Reusability

Design Tenet: Open Architecture

Maintainability

Evaluation Criteria:
1) Test: [61217.1]
Are deployment descriptors used?
Procedure:
Check for the existence of deployment descriptors in the appropriate directories. Usually the file is named web. xni .
Example:

None

Page 277

Part 5: Developer Guidance

G1218
Statement:

Use a build tool that supports operation in an automated mode.
Rationale:

During testing, human interaction can be a cause of error and unrepeatable results. Operating in automated mode
can eliminate these errors.

Referenced By:

Automate the Software Build Process

Design Tenet: Open Architecture

Maintainability

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:
1) Test: [G1218.1]
Does the tool have a build all target?
Procedure:
Check the build scripts or descriptors of the build tool for the ability to build the entire project, system, or application.
Example:

None

Page 278

Part 5: Developer Guidance

G1219
Statement:

Use a build tool that checks out files from configuration control.

Page 279

Part 5: Developer Guidance

G1220
Statement:

Use a build tool that compiles source code and dependencies that have been modified.

Rationale:

To limit the changes made between builds, only compile code that has been modified. If there are no intermediate
files, then compile all files.

Referenced By:

Automate the Software Build Process

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Maintainability

Evaluation Criteria:

1) Test: [61220.1]
Does the tool have a compile target?
Procedure:

Check the build scripts or descriptors of the build tool for the ability to compile the entire project, system, or
application.

Example:

None

2) Test: [G1220.2]

Do all the intermediate files (e.g., . obj or. cl ass) have the same date and time stamps?
Procedure:

Scan the files for date and time stamps.

Example:

None

Page 280

Part 5: Developer Guidance

G1221
Statement:

Use a build tool that creates libraries or archives after all required compilations are completed.

Rationale:

Libraries should be able to be recreated independently of any executables and should always verify that any
intermediate files are not stale.

Referenced By:

Design Tenet: Open Architecture

Design Tenet: Service-Oriented Architecture (SOA)
Automate the Software Build Process
Maintainability

Evaluation Criteria:
1) Test: [61221.1]
Does the tool have a generate library target?
Procedure:
Check the build scripts or descriptors of the build tool for the ability to generate the composing libraries or archives.
Example:

None

Page 281

Part 5: Developer Guidance

G1222
Statement:

Use a build tool that creates executables.
Rationale:

An executable is dependent on many files, including source files, intermediate files, and libraries or archives. The
building of the executable must support a control process that includes configuration management, compiling, and
testing.

Referenced By:

Automate the Software Build Process

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Maintainability

Evaluation Criteria:
1) Test: [61222.1]
Does the tool have an executable target?
Procedure:

Check the build scripts or build tool descriptors for the ability to build the executables for the entire project, system, or
application.

Example:

None

Page 282

Part 5: Developer Guidance

G1223
Statement:

Use a build tool that is capable of running unit tests.
Rationale:

All code should be able to be tested independently of creating intermediate files, libraries, or executables.

Tests should be unit tests as well as system-level tests.

Referenced By:

Automate the Software Build Process
Maintainability

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Evaluation Criteria:
1) Test: [61223.1]
Does the tool have a test target?
Procedure:
Check the build scripts or descriptors of the build tool for the ability to test the entire project, system, or application.
Example:

None

Page 283

Part 5: Developer Guidance

G1224
Statement:

Use a build tool that cleans out intermediate files that can be regenerated.
Rationale:

For security reasons, all files that comprise the build need to be under configuration control. Cleaning out all files is
essential in ensuring that only approved code is incorporated into the build.

Referenced By:

Automate the Software Build Process

Design Tenet: Open Architecture

Design Tenet: Service-Oriented Architecture (SOA)
Maintainability

Evaluation Criteria:
1) Test: [61224.1]
Does the tool have a clean target?
Procedure:

Check the build scripts or descriptors for the build tool for the ability to remove the entire project, system, or
application files.

Example:

None

Page 284

Part 5: Developer Guidance

G1225
Statement:

Use a build tool that is independent of the Integrated Development Environment.

Rationale:

Some build tools are tightly coupled with an Integrated Development Environment (IDE) that causes vendor
lock-in and license issues when the software is delivered to the Government.

Referenced By:

Maintainability

Automate the Software Build Process

Design Tenet: Open Architecture

Interoperability

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61225.2]

Is the build tool one of the recognized standards, such as ant?
Procedure:

Check for files named bui | d. xm .

Example:

None

2) Test: [G1225.3]

Is the build tool one of the recognized standards, such as nake or nnmake?
Procedure:

Check for files with the name makefi | e.

Example:

None

3) Test: [G1225.1]
Does the build tool require a license?
Procedure:

Check for files with the name makefi | e.

Page 285

Part 5: Developer Guidance
Example:

None

Page 286

Part 5: Developer Guidance

G1236
Statement:

Do not hard-code the endpoint of a Web service vendor.

Rationale:

An endpoint is the URL or location of the Web service on the Internet. A major benefit of Web services is the
ability to relocate a Web service to another location or dynamically discover and use a Web service using registry
facilities. Some Web service vendors hard-code the URL of the Web service which causes maintenance and
portability problems.

Referenced By:

Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
Interoperability

Design Tenet: Service-Oriented Architecture (SOA)
Insulation and Structure

Maintainability

Evaluation Criteria:
1) Test: [61236.1]
Are there any hard-coded Web service vendor endpoints in the client code?
Procedure:
Parse the code and look for hard-coded endpoints. These endpoints look just like a normal HTTP Web address.
Example:

None

Page 287

Part 5: Developer Guidance

G1237
Statement:

Do not hard-code the configuration data of a Web service vendor.

Rationale:

Some vendors generate code that passes Web service vendor-specific configuration data during initialization or
startup. This reduces the portability of the code and can cause maintenance problems later.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity
Interoperability

Insulation and Structure

Maintainability

Evaluation Criteria:
1) Test: [61237.1]
Is there any Web service vendor-specific configuration data in the client code?
Procedure:
Parse the code and look for hard-coded configuration data that might be used to configure the vendor's Web service.
Example:

None

Page 288

Part 5: Developer Guidance

G1239
Statement:

Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of vendor-
dependent connections to the enterprise.

Rationale:

This isolation increases maintainability. Guidance G1071 asserts that vendor-neutral connection mechanisms
should be used. When vendor-specific connection mechanisms are unavoidable, this guidance will apply.

Referenced By:

Design Tenet: Open Architecture

Maintainability

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity

JNDI Security

Evaluation Criteria:

1) Test: [61239.1]
Is the connection mechanism vendor-dependent?
Procedure:

Examine the source code for vendor-specific imports or includes.

Make sure that all references to the vendor-specific connection mechanisms are isolated to a single class (like a
helper) or set of methods that are used as part of an isolation design pattern such as facade, proxy, or adapter.

Also, look for hard-coded vendor-specific connection strings.
Example:

None

Page 289

Part 5: Developer Guidance

G1245
Statement:

Isolate the Web service portlet from platform dependencies using the Web Services for Remote Portlets
(WSRP) Specification protocol.

Rationale:

The OASISWSRP 1.0 Specification accounts for the fact that producers and consumers may be implemented on
very different platforms, such as a Java EE-based Web service, a Web service implemented on the Microsoft .Net
platform, or a portlet published directly by a portal.

Referenced By:

Web Portals

Interoperability

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity

Design Tenet: Open Architecture

Design Tenet: Decentralized Operations and Management

Evaluation Criteria:

1) Test: [61245.3]
Does the Web service implement the WSRP Portlet Configuration interface?
Procedure:

Look for the occurrence of the get Servi ce, get Port| et Descri ption,cl onePortlet,destroyPortlets,
setPortl et Properties,getPortl etProperties andgetPortletPropertyDescription methods as
defined in the OASIS WSRP Portlet Configuration API Specification.

Example:

public static Portl et Managenent Servi ce get Servi ce
(java.lang. String baseEndpoi nt
) throws java.l ang. Exception
public PortletDescripti onResponse get Portl| et Description
(Regi strationContext registrationContext,
Portl et Cont ext portl et Context,
User Cont ext user Cont ext,
java.lang. String[] desiredLocal es
) throws java.l ang. Exception
public PortletContext clonePortl et
(Regi strationContext registrationContext,
Portl et Cont ext portl et Context,
User Cont ext user Cont ext
) throws java.l ang. Exception
public DestroyPortl| et sResponse destroyPortlets
(Regi strationContext registrationContext,
java.lang. String[] portletHandl es
) throws java.l ang. Exception
public PortletContext setPortletProperties
(Regi strationContext registrationContext,
Portl et Cont ext portl et Context,
User Cont ext user Cont ext,
Propertyli st propertyli st

Page 290

Part 5: Developer Guidance

) throws java.l ang. Exception
public PropertylList getPortletProperties
(RegistrationContext registrationContext,
Port| et Context portl et Context,
User Cont ext user Cont ext,
java.lang. String[] names
) throws java.l ang. Exception
public PortletPropertyDescriptionResponse get Portl et PropertyDescription
(RegistrationContext registrationContext,
Port| et Context portl et Context,
User Cont ext user Cont ext,
java.lang. String[] desiredLocal es
) throws java.lang. Excepti onThr ows

2) Test: [G1245.1]
Does the Web service implement the WSRP Markup interface?
Procedure:

Look for the definition of the get Mar kup, per f or nBl ocki ngl nt eracti on, i ni t Cooki e and r el easeSessi ons
methods as defined in the OASIS WSRP Markup API Specification.

Example:

publ i ¢ Mar kupResponse get Mar kup
(Regi strationContext registrationContext,
Port | et Cont ext portl et Context,
Runt i neCont ext runti neCont ext,
User Cont ext user Cont ext,
Mar kupPar anms nmar kupPar ans
) throws java.l ang. Exception
public voi d perfornBl ockinglnteraction
(Regi strationContext registrationContext,
Port | et Cont ext portl et Context,
Runt i neCont ext runti neCont ext,
User Cont ext user Cont ext,
Mar kupPar ans mar kupPar ans,
I nteractionParans interactionParans
) throws java.l ang. Exception
publ i c Extension[] initCookie
(Regi strationContext registrationContext
) throws java.l ang. Exception
public Extension[] rel easeSessions
(Regi strationContext registrationContext,
java.lang. String[] sessionlDs
) throws java.l ang. Exception

3) Test: [G1245.4]
Does the Web service implement the WSRP Registration interface?
Procedure:

Look for the occurrence of the get Ser vi ce, r egi st er, der egi st er, and nodi f yRegi strati on methods as
defined in the OASIS WSRP Specification.

Example:

public static RegistrationService getService
(java.lang. String baseEndpoi nt
) throws java.l ang. Exception
publ i c Regi strati onContext register
(java.lang. String consuner Nane,

Page 291

Part 5: Developer Guidance

java. lang. String consumer Agent,
bool ean met hodGet Support ed
java.lang. String[] consuner Mbdes
java.lang. String[] consuner WndowsSt at es,
java.lang. String[] consunerUser Scopes
java.lang. String[] custonlUserProfileData
Property[] registrationProperties
) throws java.l ang. Exception
publ i c ReturnAny deregister
(java.lang. String registrati onHandl e
byte[] registrationState
) throws java.l ang. Exception
public RegistrationState nodifyRegi stration
(RegistrationContext registrationContext,
Regi strati onData regi strationbData
) throws java.l ang. Exception

4) Test: [G1245.2]

Does the Web service implement the WSRP Service Description interface?

Procedure:

Look for the occurrence of the get Ser vi ce, regi st er, and get Ser vi ceDescri pti on methods as defined in the
OASIS WSRP Service Description API Specification.

Example:

public static ServiceDescriptionService getService
(java.lang. String baseEndpoi nt
) throws java.l ang. Excepti onThr ows:
j public ServiceDescription getServiceDescription
(RegistrationContext registrationContext,
java.lang. String[] desiredLocal es
) throws java.l ang. Exception

Page 292

Part 5: Developer Guidance

G1267
Statement:

Use industry standard HTML data entry fields on Web pages.

Rationale:

Macromedia Flash and Java Applets can also be used for data input but are not HTML standards and tend to
decrease the maintainability of a Web site.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Open Architecture

Maintainability

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [61267.1]
Do any Web pages have data entry fields?
Procedure:

Search all Web pages for the "applet" and "embed" tags. Load each page found in the search by loading and visually
inspecting to see if Flash or Applets are used for data entry.

Example:

Correct Usage:

Person's Name: [

1112

Incorrect usage:

Applet
Flash

Page 293

Part 5: Developer Guidance

G1268
Statement:

Label all data entry fields.

Rationale:

A label provides the user with a brief description of the text to be entered. Labels are essential for a user to
understand the data entry field.

Referenced By:

Human-Computer Interaction
Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Evaluation Criteria:

1) Test: [G1268.1]
Are all data entry fields labeled?
Procedure:

Search all Web pages for the word "form" and load each resulting Web page in a browser. Visually inspect each data
entry field to make sure it has labels.

Example:

None

Page 294

Part 5: Developer Guidance

G1270

Statement:

Include scroll bars for text entry areas if the data buffer is greater than the viewable area.

Rationale:

Scroll bars provide a visual cue to the user that the text extends beyond the viewable area. Scroll bars will appear
by default for an HTML text area.

Referenced By:

Interoperability
Human-Computer Interaction
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61270.1]
Do any Web pages turn off scroll bars for text areas?
Procedure:

Search all Web pages and style sheets for the phrase "overflow:hidden" or a form thereof. This turns off scroll bars
using styles, but only works in certain browsers. Make sure it is not used.

Example:
Correct Usage
Scroll bars should not be hidden.

Incorrect Usage

Inline style:

<htnm >

<body>

<fornmp

<textarea styl e="overfl ow hi dden"></t ext area>
</form

</ body>

</htm >

External style:

textarea.scroll {
over f | ow hi dden;
}

Page 295

Part 5: Developer Guidance

G1271
Statement:

Provide instructions and HTML examples for all style sheets.

Rationale:

An instruction manual will enable developers to use the style sheet correctly and efficiently.

Referenced By:

Browser-Based Clients

Style Sheets

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Reusability

Extensibility

Maintainability

Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test: [G1271.1]
Are instructions included for each style sheet provided?
Procedure:
Verify that a document is provided that contains instructions and example code for each style provided.
Example:

Correct usage:

Cascadi ng styl e sheet:

.td-itens {
text-align:right;

}

Example of usage:

Incorrect usage:
No HTML example explaining style usage.

Page 296

Part 5: Developer Guidance

G1276
Statement:

Do not modify the contents of the Web browser's status bar.

Rationale:

Using the browser's status bar to display text unrelated to status affects interoperability because a user expects
the status bar to provide status and nothing else.

Referenced By:

Design Tenet: Open Architecture

Design Tenet: Enterprise Service Management
Interoperability

Design Tenet: Accommodate Heterogeneity

Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61276.1]
Do any of the Web pages modify the browser status bar?
Procedure:

Search every Web page for the word "status" and visually inspect each of the search results to see if the status bar
has been modified.

Example:

Correct usage:

Web pages contain no references to w ndow. status
Incorrect usage:

wi ndow. status = "text to display in status bar'

Page 297

Part 5: Developer Guidance

G1277
Statement:

Do not use tickers on a Web site.

Rationale:

Tickers can irritate the user and use unnecessary bandwidth.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Interoperability
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61277.1]
Do any Web pages contain scrolling text?
Procedure:

Most tickers are written using Applets or Flash. Search all Web pages for the "applet” and "embed" tags. Load each
page found in the search and visually inspect to make sure no tickers exist.

Example:

Correct usage:
No applet or flash references contain tickers.
Incorrect usage:

Applet:

appl et code="nyticker.class" w dth="200" hei ght="200"
Flash:

enbed src="nyticker.swf" w dt h="200" hei ght="200"

Page 298

Part 5: Developer Guidance

G127/8
Statement:

Use the browser default setting for links.

Rationale:

Browsers underline links by default. Do not rely on "mouse over" to identify links. Using mouse over to designate
links can confuse and slow down infrequent users because they are uncertain which links perform which functions.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1278.1]
Do any Web pages or style sheets modify the browser default settings for links?
Procedure:

Search all the Web pages and style sheets for "A:link," "A:visited" and "A:active." Inspect all search results and make
sure none of them modify the "A:" items.

Example:

Correct usage:

Web pages and style sheets should have no reference to Allink, A visited or A active.

Incorrect usage:

A:link, Avisited, A active {
t ext - decor ati on: none;

}

Page 299

Part 5: Developer Guidance

G1283
Statement:

Use linked style sheets rather than embedded styles.

Rationale:

Only by referencing an external file will you be able to update the look of an entire Web site with a single change.
Also, by pulling style definitions out of the pages, they (Web pages) will be smaller and faster to download.

Referenced By:

Style Sheets

Maintainability

Reusability

Browser-Based Clients

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Scalability

Evaluation Criteria:

1) Test: [61283.1]
Does a Web page use the LINK tag to include external style sheets instead of embedding styles?
Procedure:

View the source of the HTML page. The header tag (head) should contain links to external style sheet (.css) files. The
header tag should not contain any style tags.

Example:

Correct usage:

External style:

<head>
<link rel =styl esheet href="style.css" type="text/css" nedi a=screen>
<link rel =styl esheet href="basic.css" type="text/css" nedi a=screen>
</ head>

Incorrect usage:

Embedded style:

<head>
<style type="text/css">
td {
background: # f 0
}
</styl e>
</ head>

Page 300

Part 5: Developer Guidance

G1284
Statement:

Use only one font for HTML body text.

Rationale:

Users may not have a wide variety of fonts available in their browser, so it is best to use a single, common font.
The general standard is to make body text sans serif since most people find sans serif fonts easier to read on
monitors and serif fonts better for printed materials.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Interoperability

Design Tenet: Service-Oriented Architecture (SOA)

Design Tenet: Open Architecture

Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:

1) Test: [G1284.1]
Does the HTML or style sheet refrain from using more than one font?
Procedure:

Search all Web pages and style sheets for the word "font." Make sure only one type of font is used for body text. May
need to visually inspect Web pages to see if a defined font style is used within the body.

Example:

Correct usage:

Cascading style sheet:

body. mai n {
font:sans-serif;

}

HTML:
Incorrect usage:

Several font styles are used within a body.

Page 301

Part 5: Developer Guidance

G1285
Statement:

Use relative font sizes.

Rationale:

Relative font sizes make Web sites more accessible and support meeting the requirements of Section 508 of the
Rehabilitation Act of 1973. Relative font sizes allow for a low-vision user to enlarge the size of the text. Relative
font sizes also support maintainability by not hard coding fixed font sizes.

Referenced By:

Design Tenet: Accommodate Heterogeneity
Human-Computer Interaction

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Interoperability

Evaluation Criteria:

1) Test: [61285.1]
Are any absolute font sizes utilized?
Procedure:

Search all Web pages and style sheets for the word "font." Inspect the results to make sure no fixed fonts are used
(e.g., 12pt).

Example:
Correct Usage

Relative or no font sizes settings are used.
Cascading style sheets:

p{
font-size: 200%
}

p{
font-size: 2em
}

Incorrect Usage

Cascading style sheets:

p {
font-size: 12pt;
}

Page 302

Part 5: Developer Guidance
HTML (the font attribute should not be used at all within HTML code, only external style sheets):

Page 303

Part 5: Developer Guidance

G1286
Statement:

Provide text labels for all buttons.

Rationale:

Users need to understand the purpose of all buttons. In some cases an image on the button is not sufficient to
convey meaning. Screen scrapers used by the visually impaired work better when text labels are available for
buttons

In cases where icons serve as buttons in order to fit within a small display device (such as a personal digital
assistant), providing an option to enable text labels (or providing alternate attributes in the case of Web-based
interfaces) supports screen scrapers.

Referenced By:

Interoperability
Human-Computer Interaction
Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [G1286.1]
Do all buttons have associated text labels?
Procedure:

Inspect the user interface to verify text labels are available for all buttons.
Text labels may optionally be displayed:
- on or near the button
- as a tooltip when the user hovers over a button
- as part of a help system where a user clicks and identify tool and then clicks a button.
Button label text may not be enabled by default on all applications, especially systems with small resolution screens
such as PDAs.

Example:

Correct usage:

<form action="mailto: ne@bc. cont

met hod="post ">

<i nput type="submt" nane="enail but"
val ue="Send feedback" />

</ fornm

Incorrect usage (using images only):

<i nput type="image" src="send.gif" name="
emai | but"/>

Page 304

Part 5: Developer Guidance

G1287
Statement:

Provide feedback when a transaction will require the user to wait.

Rationale:

Users may think that the application has stopped running or is malfunctioning.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Design Tenet: Enterprise Service Management
Human-Computer Interaction

Evaluation Criteria:

1) Test: [61287.1]
Does the application provide feedback during long processes?
Procedure:

Run the application and observe any processes that take longer than 10 seconds to complete. Observe if any status
indication is provided to alert the user of the status.

Example:

None

Page 305

Part 5: Developer Guidance

G1292
Statement:

Use text-based Web site navigation.

Rationale:

Text-based navigation works better than image-based navigation because it enables users to understand the
link destinations. Users with text-only browsers and browsers with deactivated graphics can see only text-based
navigation options.

Referenced By:

Design Tenet: Accommodate Heterogeneity

Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Evaluation Criteria:
1) Test: [61292.1]
Are there any instances where graphics are used for navigation?
Procedure:
Visually inspect all Web pages and make sure navigation elements are textual.
Example:

None

Page 306

Part 5: Developer Guidance

G1293
Statement:

Use descriptive labels for all clickable graphics.
Rationale:

Clickable images generally confuse users, especially images that contain only graphics. Some that contain both
graphics and words are also confusing because users do not know if the images are clickable without using the
mouse pointer.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Interoperability

Design Tenet: Service-Oriented Architecture (SOA)

Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test: [61293.1]
Do Web pages contain clickable images?
Procedure:

Search all Web pages for image ("img") tags embedded inside link ("a") tags. Visually inspect each image found in the
search and make sure there is an associated text description.

Example:

Correct Usage

Cick nyimage to go to www. nmywebsite.com
<i g src="nyi mage. gi f"></ a>

Incorrect Usage

<i ng
src="nyi mage. gi f " ></ a>

Page 307

Part 5: Developer Guidance

G1294
Statement:

Provide a site map on all Web sites.

Rationale:

A site map shows explicit organization of the site. Inexperienced users do not readily form a mental model of the
way that information is organized in a Web site, making it hard for them to recover from navigational errors.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Service-Oriented Architecture (SOA)
Interoperability

Evaluation Criteria:

1) Test: [61294.1]
Does the Web site have a site map?
Procedure:

Search all Web pages for anything with the name "sitemap," "site map" and "map." Visually inspect the search results
to make sure a site map is included.

Example:

None

Page 308

Part 5: Developer Guidance

G1295
Statement:

Provide redundant text links for images within an HTML page.

Rationale:

Redundant text links for images within an HTML page allow users to navigate the Web page even if their browsers
do not display images (as in situations where the Web browser renders content without images due to bandwidth
considerations). Screen scrapers that assist the visually impaired also use redundant text links. Images may occur
within Web pages as part of the content or navigation controls to include image maps.

Referenced By:

Design Tenet: Service-Oriented Architecture (SOA)

Design Tenet: Accommodate Heterogeneity

Human Factor Considerations for Web-Based User Interfaces
Interoperability

Evaluation Criteria:
1) Test: [61295.1]
Are alternative text links provided for all HTML page images used for navigation?

Procedure:

Verify that alternative text links are provided for images used for navigation by inspecting the HTML source code and
testing the HTML page in a browser with image rendering turned off.

Example:

None.

Page 309

Part 5: Developer Guidance

G1300
Statement:

Secure all endpoints.
Rationale:

Something is only as secure as its weakest link. Therefore, all access points in an application should be secured.
An endpoint is defined as an entry or an exit point of an application. Any access point can be vulnerable to attacks.
For instance, if an application file reads configuration settings from a properties file, that file can be corrupted

or incorrectly configured. This can cause incorrect behavior in the application. Also if component, module or
application provides remote access or is part of any inter-process communications, these areas are vulnerable

to attacks. For instance, if the application provides an external socket interface, does it validate commands being
sent by the client?

Referenced By:

Interoperability

General Application Security

Design Tenet: Identity Management, Authentication, and Privileges
Maintainability

Evaluation Criteria:

1) Test: [61300.2]

Does the application handle invalid configuration, provide appropriate defaults, and protect sensitive data?
Procedure:

Check application processing of data files (configuration files, properties files, preferences, XML, etc.).
Example:

None.

2) Test: [G1300.1]

Does the application properly handle security when dealing with externally accessible API(s) and external ports?
Procedure:

Verify sensitive data is protected, and verify all network base protocols validate commands and values.
Example:

None.

Page 310

Part 5: Developer Guidance

G1301
Statement:

Practice layered security.

Rationale:

An application with layered security provides more protection against attacks. Combining multiple layers of security
defenses can provide additional protection when one layer is broken.

Referenced By:

General Application Security

Other Design Tenets

Interoperability

Maintainability

Practice Defense in Depth

Design Tenet: Layering and Modularity

Evaluation Criteria:

1) Test: [61301.1]
Do internal and external API(s) perform security checks?
Procedure:

Make sure layers of API(s) starting from externally accessible API(s) down through the layers of internally accessible
API(s) provide sufficient security checks. For example, does each layer of the API perform data validation? If internal
API is calling remote services, is the data sufficiently protected from snoopers (e.g., use of secure sockets)?

Example:

None

2) Test: [G1301.2]

Does the application handle security when processing data files?
Procedure:

Embed all application specific resources such as graphics, internal application configuration files such as
internationalization properties/resources, XML files as part of a signed application deployment file (.jar, .exe, etc.).

Example:

None

Page 311

Part 5: Developer Guidance

G1302
Statement:

Validate all inputs.

Rationale:

Do not limit input validation to the presentation tier; rather, all external APIs should validate inputs prior to use.
This is just one aspect of defense in depth which can prevent many attacks including SQL Injection, Cross-Site
Scripting, Buffer Overflows, and Denial of Service.

Referenced By:

Other Design Tenets

Validate Input

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

General Application Security

Evaluation Criteria:

1) Test: [61302.2]

Does the application provide proper handling for null input?
Procedure:

Check application handling of null values.

Example:

None

2) Test: [G1302.1]

Does the application use prefix or postfix validation (asserts) to verify input parameters?
Procedure:

Check application range validation of externally accessible API(s).
Example:

None

Page 312

Part 5: Developer Guidance

G1304
Statement:

Unit test all code.

Rationale:

A high percentage of all security violations can be attributed to inadequate or non-existent unit testing. Hackers
can take advantage of these.

Referenced By:

General Application Security
Interoperability
Apply Quality Assurance to Software Development

Evaluation Criteria:
1) Test: [61304.1]
Does the project unit test the code base?
Procedure:

Use a coverage tool to determine how much of the project's code have been tested.

Check for use of a unit testing framework (JUnit for example).
Example:

None

Page 313

Part 5: Developer Guidance

G1305
Statement:

Ensure the separation of encrypted and unencrypted information.

Rationale:

Not separating encrypted and unencrypted information can cause the application to incur performance hits due to
unnecessary encryption. It can also cause inconsistent application processing.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Encryption and HAIPE
Other Design Tenets

Interoperability

General Application Security

Evaluation Criteria:

1) Test: [61305.1]
Does the data model separate sensitive data from other data?
Procedure:

Check UML or entity diagram to ensure that separate components or entities are used to defined sensitive data.

If annotation support is provided via XML, ensure that the data is properly labeled (XML attribute) with correct security
attributes.

Example:

None

Page 314

Part 5: Developer Guidance

G1306
Statement:

Identify and authenticate users of the application.

Rationale:
This ensure there is some traceability and also provides the first in a multilayer security system.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
General Application Security

Evaluation Criteria:

1) Test: [61306.2]
Does the application authenticate with another service (LDAP, database or simple password)?
Procedure:

Inspect application code to ensure that the user is authenticated against an LDAP, database or simple password
service.

Example:

None

2) Test: [G1306.1]

Does the application require user certificates?
Procedure:

Ensure the application is setup to require client side certificates. This can be done easily by using a machine without
any DoD client certificates installed and attempting to access the application.

Example:

None

Page 315

Part 5: Developer Guidance

G1307
Statement:

Provide a security policy file.

Rationale:

Security should not be an afterthought after application design and implementation. A security policy file can go
along way in ensuring that application security has been part of the design and implementation of the application.
A security policy file can identify all the security measures that the application has laid out.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Maintainability
General Application Security

Evaluation Criteria:
1) Test: [61307.1]
Does the project have Security Policy File?
Procedure:
Check for the existence of a Security Policy file.
Example:

None

Page 316

Part 5: Developer Guidance

G1308
Statement:

Configure Public Key Enabled applications to use a Federal Information Processing Standard (FIPS) 140-2
certified cryptographic module.

Rationale:

The guidance defines the application types required to support DoD class 3 PKI.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Maintainability

Interoperability

Public Key Infrastructure (PKI) and PK Enable Applications

Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [61308.1]

Is the application using an approved Federal Information Processing Standard (FIPS) 140-1
cryptographic module?

Procedure:
Check the cryptographic module to see if it is FIPS 140-2 compliant.
Example:

None

Page 317

Part 5: Developer Guidance

G1309
Statement:

Make applications handling high value unclassified information in Minimally Protected environments Public Key
Enabled to interoperate with DoD High Assurance .

Rationale:

This guidance defines the application types required to support DoD High Assurance (Mission Assurance Category
I [MAC I]) certificates.

The definition of MAC | is "systems handling information that is determined to be vital to the operational readiness
or mission effectiveness of deployed and contingency forces in terms of both content and timeliness. The
consequences of loss of integrity or availability of a MAC | system are unacceptable and could include the
immediate and sustained loss of mission effectiveness. MAC | systems require the most stringent protection
measures." (DoD Instruction 8580.1, Information Assurance (lIA) in the Defense Acquisition System, 9 July
2004. [R1199])

Note: This guidance is derived from DoD Instruction 8520.2, Public Key Infrastructure (PKI) and Public
Key (PK) Enabling, 1 April 2004. [R1206]

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Public Key Infrastructure (PKI) and PK Enable Applications
Maintainability

Evaluation Criteria:

1) Test: [61309.1]

Is the application using a High Assurance key material generated in a Federal Information Processing Standard
(FIPS) 140 Level 2 validated hardware cryptographic module?

Procedure:
Check cryptographic module to see if it is FIPS 140 Level 2 compliant.
Example:

None.

Page 318

Part 5: Developer Guidance

G1310
Statement:

Protect application cryptographic objects and functions from tampering.

Rationale:

If cryptographic objects such as private keys, key store, and CA trusted certificates are not protected, the system is
not secure.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Public Key Infrastructure (PKI) and PK Enable Applications
Interoperability

Evaluation Criteria:

1) Test: [61310.1]
Are cryptographic objects protected?
Procedure:

Check that key stores, private keys, and trust points are protected.

Verify a documented procedure for creating and documenting the creation of keys exists.
Verify a documented procedure for obtaining certificates exists.
Verify a documented procedure for backing up cryptographic objects exists.

Example:

Use High Security Level setting in Internet Explorer to ensure password protection is used. See https://
infosec.navy.mil/PKl/certs.html for software certificate steps. See https://infosec.navy.mil/PKl/cac.html for CAC.

Page 319

ps://infosec.navy.mil/PKI/certs.html
ps://infosec.navy.mil/PKI/certs.html
https://infosec.navy.mil/PKI/cac.html

Part 5: Developer Guidance

G1311
Statement:

Use Hypertext Transfer Protocol over Secure Socket Layer (HTTPS) when applications communicate with
DoD Public Key Infrastructure (PKI) components.

Rationale:
These are the DoD approved protocols and the only supported ones.

Note: This guidance is derived from DoD Instruction 8520.2, Public Key Infrastructure (PKI) and Public
Key (PK) Enabling, 1 April 2004. [R1206]

Referenced By:

Public Key Infrastructure (PKI) and PK Enable Applications
Interoperability

Reusability

Maintainability

Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:
1) Test: [61311.1]
Does the application use only HTTPS to communicate when using DoD PKI?
Procedure:
Have application access the DoD PKI Global Directory Service (GDS) Directory (dod411.gds.disa.mil/) via HTTPS.
Example:

None

Page 320

Part 5: Developer Guidance

G1312
Statement:

Make applications capable of being configured for use with DoD PKI.
Rationale:

Applications must be configurable to request and install certificates, add trust points, and require client
authentication.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.4, Version 1.0, 13 July 2000.

Referenced By:

Interoperability

Design Tenet: Identity Management, Authentication, and Privileges
Public Key Infrastructure (PKI) and PK Enable Applications
Maintainability

Evaluation Criteria:

1) Test: [61312.1]

Is there a capability to configure the application for use with DoD PKI?
Procedure:

Check to make sure the application is configurable to accept certificates, load key stores, and add trust points; this
may involve inspecting user and administrator manuals.

Example:

None

Page 321

Part 5: Developer Guidance

G1313
Statement:

Provide documentation for application configuration and setup for use with DoD PKI.
Rationale:

If the application can not be configured or setup correctly, the application is insecure. Without detail
documentation, personnel with little knowledge of security or PKI will have little chance of keeping the overall
system secure. The Navy Public Key Infrastructure training site, https://infosec.navy.mil/PKl/training.html (DoD PKI
Certificate required for access), contains links to several configuration guides.

Note: This guidance is derived from the DoD Instruction 8520.2, Public Key Infrastructure (PKI) and
Public Key (PK) Enabling, 1 April 2004. [R1206]

Referenced By:

Maintainability
Public Key Infrastructure (PKI) and PK Enable Applications
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [61313.1]

Is there documentation (such as Standard Operating Procedures [SOPs]) on how to configure and setup the
application to interoperate within the DoD PKI?

Procedure:

Verify by inspection of the SOPs and by a demonstration that the application performs as documented when the
configuration guidance is followed.

Example:

Most application manuals have detailed instructions in enabling PKI (either under the heading "enabling SSL" or
"certificates").

Page 322

https://infosec.navy.mil/PKI/training.html

Part 5: Developer Guidance

G1314
Statement:

Provide applications the ability to import and export keys (software certificates only).

Rationale:

The whole PKI system is predicated on the use of public-private key pair. The ability to import and use private keys
is critical to a functional PKI application.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.5, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Key Management

Interoperability

Maintainability

Evaluation Criteria:

1) Test: [61314.1]
Is the application able to import and export keys associated with standard certificates for individuals?
Procedure:

Have the application import and export at least one set of keys and certificates for each certificate type supported by
the application. Demonstrate interoperability by performing representative subscriber and relying party operations with
each certificate type and its related keys.

Note: Verify the correctness of the exported file through analysis.

Example:

Internet Explorer can import/export certificates using Tools > Internet Options. Click on Internet tab and then click on
Certificates link. Import/Export options are located here.

UNIX-based Web server keys are exported by making a copy of the keys file and placing it in a safe location.

Page 323

Part 5: Developer Guidance

G1315
Statement:

For applications, use key pairs and Certificates created for individuals using DoD PKI methods and procedures
defined by the DoD Class 3 Public Key Infrastructure Interface Specification and the Personal Information
Exchange Syntax Standard.

Rationale:

DoD PKI supports these standards for importing keys and certificates. If the key or certificate is not created or
issued by approved DoD Certificate architecture, it can not be trusted to interoperate within the DoD network.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.5, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Maintainability

Interoperability

Key Management

Evaluation Criteria:

1) Test: [61315.1]
Can the application import and export keys associated with standard certificates for individuals?
Procedure:

Verify by importing and exporting to DoD PKI key store.

Access the application using a DoD PKI Class 3 Certificate.
Example:

For servers, verify that the application requires client side authentication. Access the application server using a DoD
PKI certificate.

Page 324

Part 5: Developer Guidance

G1316
Statement:

Ensure that applications protect private keys.

Rationale:

In order for the PKI system to stay secure, the private key must not be compromised. Protecting the private key
helps prevent attackers from decrypting secured data communications.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.5, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Key Management

Evaluation Criteria:

1) Test: [G1316.1]
Does the application use and store the private key securely?
Procedure:

Check for the following:

- all copies of the private key destroyed when private key operation is complete; for example, check that the private
key does not stay in application memory permanently

- the private key is password protected with a strong password
- the keystore is password protected with a strong password

Example:

Attempt to view the contents of the private key using a document viewer program.

Page 325

Part 5: Developer Guidance

G1317
Statement:

Ensure applications store Certificates for subscribers (the owner of the Public Key contained in the Certificate)
when used in the context of signed and/or encrypted email.

Rationale:
This will allow other parties to use the public key to encrypt messages sent to the application.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document. Section (4.5), Version 1.0, July 13, 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Key Management
Interoperability

Evaluation Criteria:
1) Test: [61317.1]
Is the public key available from the Directory Server application?
Procedure:
See if it is possible to extract the public key certificate from the Directory Server application.
Example:

None

Page 326

Part 5: Developer Guidance

G1318
Statement:

Develop applications such that they provide the capability to manage and store trust points (Certificate
Authority Public Key Certificates).

Rationale:
This will ensure the certificate is valid and expedite verification of the certificate.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Key Management

Interoperability

Maintainability

Evaluation Criteria:

1) Test: [61318.1]

Is the Certificate Authority public key available from the application?

Procedure:

View the application's trust list to verify DoD PKI Class 3 CA certificates are present.
Example:

For Internet Explorer, view the DoD PKI Class 3 CA certificates by selecting Tool s>l nt ernet Opti ons. Click
on the | nt er net tab and then click on the Publ i sher s button. Click on the Trust ed Root Certifi cation
Aut hori ti es tab and scroll down to verify that the DoD PKI Class 3 CA certificates are present.

Web server Certificate Authority certificates can usually be viewed by the application's GUI. If a GUI is not offered,
reference the application’'s manual concerning certificate management.

Page 327

Part 5: Developer Guidance

G1319
Statement:

Ensure applications can recover data encrypted with legacy keys provided by the DoD PKI Key Recovery Manager
(KRM).

Rationale:

Applications may have the need to decrypt legacy information that the application originally encrypted.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Key Management

Interoperability

Maintainability

Evaluation Criteria:

1) Test: [61319.1]
Is the application able to recover legacy encrypted data?
Procedure:

Acquire the legacy key and demonstrate the ability
to decrypt data that is encoded by that key.

Example:

None

Page 328

Part 5: Developer Guidance

G1320
Statement:

Use a minimum of 128 bits for symmetric keys.

Rationale:
Strong encryption helps to prevent unauthorized data decryption using modern day resources.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Design Tenet: Encryption and HAIPE

Interoperability

Maintainability

Encryption Services

Evaluation Criteria:

1) Test: [61320.1]

Are symmetric key encryption levels at least 128 bit?

Procedure:

Check the server configuration and verify that the symmetric keys being used are at least 128 bit.
Example:

Verified Web server ciphers under the SSL portion of the configuration pages of the administration server.

For Internet Explorer 5.0 and above, click the Hel p menu and then click the About | nt ernet Expl or er option.
The About box will list the Cipher Strength.

2) Test: [G1320.2]

Is the application using domestic (U.S.) grade ciphers?
Procedure:

Verify that the application supports domestic (U.S.) grade ciphers.
Example:

None.

Page 329

Part 5: Developer Guidance

G1321
Statement:

Enable applications to be capable of performing Public Key operations necessary to verify signatures on DoD PKI
signed objects.

Rationale:

An application must verify the digital signature and check its validity against the current Certificate Revocation
List (CRL) maintained by an on-line repository (e.g., Online Status Check Responder or OSCR).

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Encryption and HAIPE

Maintainability

Design Tenet: Identity Management, Authentication, and Privileges
Encryption Services

Reusability

Interoperability

Evaluation Criteria:

1) Test: [61321.1]
Does the application verify signed objects?
Procedure:

Check that the application validates signed objects against DoD root certificates.

Check that the signing certificate has not been revoked by checking against Certificate Revocation Lists or using the
Online Certificate Status Protocol (OCSP).

Example:
Make a back-up copy of the certificate. For Windows based applications, stop the application and edit the signature

of the certificate and save the certificate. Start the application back up. The application should fail to start as the
signature check will fail.

For validity checking, confirm a validity check of the certificate was performed by viewing the application's audit log.

Page 330

Part 5: Developer Guidance

G1322
Statement:

Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of encrypting and
decrypting data using the Triple Data Encryption Algorithm (TDEA).

Rationale:

Applications should use cryptographic modules approved under Federal Information Processing Standard
(FIPS) 140, Level 1.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Maintainability

Design Tenet: Encryption and HAIPE

Design Tenet: Mediate Security Assertions

Encryption Services

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Evaluation Criteria:

1) Test: [61322.1]

Does the application use TDEA for encrypting and decrypting data?

Procedure:

Inspect the application's configuration file to confirm that TDEA is used for encrypting and decrypting data.
Example:

Most server based applications have cipher related information stored under SSL, certificates, or security. Verify that
the application is using TDEA.

Page 331

Part 5: Developer Guidance

G1323
Statement:

Generate random symmetric encryption keys when using symmetric encryption.

Rationale:

If the application can not generate random keys, then it is vulnerable to attacks if attackers can determine the
algorithm for generating the random symmetric encryption keys.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Maintainability

Design Tenet: Encryption and HAIPE

Encryption Services

Interoperability

Evaluation Criteria:

1) Test: [61323.1]

Does the application generate random symmetric encryption keys?

Procedure:

Verify that the random seed is generated (e.g., by viewing the application's vendor documentation).
Example:

Most server based applications either user MOD_SSL or OPEN_SSL. These two toolkits properly use random seed
generators.

Apache based servers may require the administrator to type random keystrokes on the keyboard. This process is
generating the random seed.

Page 332

Part 5: Developer Guidance

G1324
Statement:

Protect symmetric keys for the life of their use.

Rationale:

Symmetric key encryption algorithms are based on trivially related keys for both encryption and decryption.

The advantage of symmetric key encryption is that it is much less computationally intensive for encryption and
decryption compared to asymmetric algorithms. The disadvantage is that the shared symmetric key must be kept
secure during storage and transmission.

To prevent disclosure, new symmetric keys are often generated for each unique session and exchanged using
another encryption algorithm. Store symmetric keys that are used long term carefully to prevent disclosure.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Encryption Services
Interoperability
Design Tenet: Encryption and HAIPE
Maintainability
Evaluation Criteria:

1) Test: [61324.1]

Are symmetric keys stored in unprotected locations?

Procedure:

Check for hard coded symmetric keys in source code or files with weak permissions.
Example:

Symmetric keys should be generated for each session and destroyed when the session is destroyed, never stored in a
file with weak permissions or hard coded in source code.

Page 333

Part 5: Developer Guidance

G1325
Statement:

Encrypt symmetric keys when not in use.

Rationale:

Symmetric keys enable both sides of the conversation to have knowledge of the key for encryption. It can not
be given out freely, which means if it is going to be stored for repeated use, it should be encrypted first before
storage.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Maintainability

Encryption Services

Design Tenet: Encryption and HAIPE

Evaluation Criteria:
1) Test: [61325.1]
Does the application encrypt symmetric keys when not in use?
Procedure:
Check that the application encrypts symmetric keys during storage.
Example:

None.

Page 334

Part 5: Developer Guidance

G1326
Statement:

Ensure applications are capable of producing Secure Hash Algorithm (SHA) digests of messages to support
verification of DoD PKI signed objects.

Rationale:

Symmetric keys enable both sides of the conversation to have knowledge of the key for encryption. It can not
be given out freely, which means if it is going to be stored for repeated use, it should be encrypted first before
storage.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Interoperability

Design Tenet: Encryption and HAIPE

Maintainability

Encryption Services

Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [61326.1]

Does the application use SHA digest?

Procedure:

Visually validate that the SHA digest is used for symmetric keys.
Example:

Most application servers allow one to configure the hash to SHA1. Please note that the default for most applications is
MD5.

Page 335

Part 5: Developer Guidance

G1327
Statement:

Enable an application to obtain new Certificates for subscribers.

Rationale:

If the application generates subscriber keys, the application shall demonstrate the ability to generate keys, request
new certificates, and obtain new certificates through interaction with the DoD PKI. If the generated keys are for
encryption applications, the application shall demonstrate its ability to provide keys to the DoD PKI KRM.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.2, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing

Maintainability

Interoperability

Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [61327.1]

Can the application request and obtain new certificates for subscribers?

Procedure:

For application servers, verify that the application can successfully request a certificate via the appropriate certificate
request page from a DoD PKI CA.

For application servers, verify that the application can successfully download an issued certificate from a DoD PKI CA.
Example:

Instructions in obtaining a DoD PKI certificate for a user are available at https://infosec.navy.mil/PKl/users.html.

Instructions for obtaining a DoD PKI certificate for web servers including Netscape, Lotus, and IIS is available at
https://infosec.navy.mil/PKl/training.html.

Page 336

https://infosec.navy.mil/PKI/users.html
https://infosec.navy.mil/PKI/training.html

Part 5: Developer Guidance

G1328
Statement:

Enable an application to retrieve Certificates for use, including relying party operations.

Rationale:
The ability to retrieve certificates from DoD certificate repositories further ensures the authenticity of the certificate .

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.3, Version 1.0, 13 July 2000.

Referenced By:

Interoperability

Certificate Processing

Maintainability

Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [61328.1]

Can the application retrieve Certificates from a DoD PKI certificate repository?

Procedure:
Verify that the application can communicate with a DoD PKI certificate repository such as GDS.
Example:

This test procedure is only required for applications that must send encrypted e-mail. For this scenario,
assume that Outlook is used; instructions for using Outlook 2000 are available at https://infosec.navy.mil/PKI/
Outlook_2000_0704.pdf

Page 337

Part 5: Developer Guidance

G1330
Statement:

Ensure applications are capable of checking the status of Certificates using a Certificate Revocation List (CRL)
if not able to use the Online Certificate Status Protocol (OCSP).

Rationale:

Applications must verify the validity of the certificate prior to establishing trust with another entity. CRL is the
legacy mechanism for validating certificates. Applications should favor OSCP for new development.

Applications operating in environments with network connectivity to aCRL distribution point should be able to
obtain a current CRL. Applications should be able, without user intervention, to obtain a current CRL to check

the status of a certificate that contains a CRL distribution point extension. Applications with network connectivity
unable to find CRL distribution points automatically should be capable of being configured with a distribution point
that the application then uses to obtain CRLs as needed.

Systems on DoD networks must use a local Web cache to obtain the latest DoD PKI issued CRL per Joint Task
Force Global Network Operations (JTF GNO) Communications Tasking Order (CTO) 07-015 of 11 December
2007 (specifically Task 11; DoD PKI Certificate required for access). Configuration instructions for known Web
cache products in use and alternative CRL caching capabilities are available from the following location: https://
www.us.army.mil/suite/page/474113 (Army or Defense On Line [AKO or DKO] site registration and DoD PKI
Certificate required for access).

Note: This guidance is derived from DoD Instruction 8520.2, Public Key Infrastructure (PKI) and Public
Key (PK) Enabling, 1 April 2004. [R1206]

Referenced By:

Design Tenet: Network Connectivity
Certificate Processing
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Maintainability
Evaluation Criteria:

1) Test: [61330.1]

Can the application perform Certificate status checking with a CRL?
Procedure:

Verify that the application can download a CRL successfully .
Example:

Visually inspect the application is configured to use CRLs for validity checking. This can be achieved by looking at the
directory in which the application stores the CRLs.

Page 338

https://www.jtfgno.mil/operations/cto/2007/CTO_07_15/CTO_PKI_Phase2v17%20(11Dec07).rtf
https://www.us.army.mil/suite/page/474113
https://www.us.army.mil/suite/page/474113

Part 5: Developer Guidance

G1331
Statement:

Ensure applications are able to check the status of a Certificate using the Online Certificate Status Protocol
(OCSP).

Rationale:

Applications must verify the validity of the certificate prior to establishing trust with another entity. CRL is the legacy
mechanism for validating certificates. Applications should favor OCSP for new development.

Applications may use an OSC responder to check the status of a particular certificate when the DoD has an
operational responder. Applications shall prepare and transmit the request to the responder using HTTP in
accordance with the DoD Class 3 PKI Infrastructure Interface Specification.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.4.2, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Maintainability

Certificate Processing

Evaluation Criteria:

1) Test: [61331.1]

Can the application perform Certificate status checking with OCSP?

Procedure:
Verify that the application can performing OCSP queries to an OSC Responder successfully.
Example:

Visually inspect the application is configured to use OCSP for validity checking. This can be achieved by looking at the
configuration file to see that the application is configured to use OCSP. One can also visually look at the application's
log file to validate that the application is making OCSP queries.

Page 339

Part 5: Developer Guidance

G1333
Statement:

Only use a Certificate during the Certificate's validity range, as bounded by the Certificate's "Validity - Not Before"
and "Validity - Not After" date fields.

Rationale:
Expired certificates should not be accepted except in cases where legacy data was archived.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Maintainability
Evaluation Criteria:

1) Test: [61333.1]

Do the date and time of the use of the Certificate fall within the Certificate's validity period?
Procedure:

Visually inspect the certificate's validity dates. The certificate should be valid and not expired.
Example:

Each digital certificate has a lifetime. When viewing a certificate, the certificate will have a valid from date and a valid
to date. The current date should fall within this range.

Page 340

Part 5: Developer Guidance

G1335

Statement:

Make applications capable of being configured to operate only with PKI Certificate Authorities specifically approved
by the application's owner/managing entity.

Rationale:

Using approved PKI Certificate Authorities ensures certificate authenticity and ensures that the certificate is
chained to the issuer.DoD trust points ensure certificates are chained to the issuer of the certificate and are
authentic.

For example, DoD applications are configured to use DoD PKI Certificate Authorities only per the DoD Class 3 PKI
- Public Key-Enabled Application Requirments Document Version 1.0, 13 July 2000.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability
Certificate Processing
Reusability
Maintainability
Evaluation Criteria:

1) Test: [61335.1]

Is the application configured to operate only with approved PKI Certificate Authorities?
Procedure:

Visually inspect that only the DoD PKI certificates are trusted by the application.
Example:

Applications typically allow one to view the trust points via the administrative interface to the application. CA
certificates are typically located under Certificate Management, SSL, or Security.

Page 341

Part 5: Developer Guidance

G1338
Statement:

Applications and Certificates need to be able to support multiple organizational units.

Rationale:
DoD requirements dictate that certificates shall support multiple organizational units.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Maintainability

Certificate Processing

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Evaluation Criteria:

1) Test: [61338.1]
Can the application process a Certificate that contains multiple organizational units in the Distinguished Name?
Procedure:

Visually inspect the DoD PKI CA certificates stored in the application. You will notice that each certificate contains
multiple organizational units (OU=DoD, OU=PKI)

Example:

The majority of certificate request forms do not contain entries for multiple organizational units. In this case, include all
of the organizational unit information in the single line. For example, for Navy, please enter the following information
next to the Organizational Unit line: Navy, OU=DoD, OU=PKI.

Once the certificate is issued, visually inspect this certificate to verify that the certificate contains these Organizational
Unit values.

Page 342

Part 5: Developer Guidance

G1339
Statement:

Practice defensive programming by checking all method arguments.
Rationale:

Data validation is not limited to Graphical User Interfaces. API(s) and library functions are also susceptible to
corruption. The integrity of application can benefit from identifying invalid data as early as possible.

Referenced By:

Validate Input
Interoperability

API Security

Other Design Tenets

Evaluation Criteria:

1) Test: [61339.1]
Does the application perform range validation?
Procedure:

Check for unit tests.
Check thrown exceptions.

Purposely send invalid data to API(s) to test the integrity and handling of invalid data.
Example:

None.

Page 343

Part 5: Developer Guidance

G1340
Statement:

Log all exceptional conditions.
Rationale:

Logging exceptional conditions can help to identify security problems, trace the source of the exception, and
trigger security alerts.

Referenced By:

API Security
Maintainability
Handle Exceptions
Other Design Tenets

Evaluation Criteria:
1) Test: [61340.1]
Does the application perform logging of exceptional conditions?
Procedure:
Check exception handlers for logging support.
Example:

None.

Page 344

Part 5: Developer Guidance

G1341
Statement:

Use a security manager support to restrict application access to privileged system resources.
Rationale:

Desktop applications by default do not install a security manager. Installing a security manager could prevent
unsecured access to system resources such as network and file system. Desktop applications can benefit from
using a security manager to ensure that system resources are protected.

Referenced By:

Java Security

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Design Tenet: Cross-Security-Domains Exchange

Evaluation Criteria:
1) Test: [61341.1]
Does an installed security manager restrict application access to privileged system resources?
Procedure:
Check application main method for installation of a security manager.
Example:

None.

Page 345

Part 5: Developer Guidance

G1342
Statement:

Restrict direct access to class internal variables to functions or methods of the class itself.

Rationale:

One of the primary tenets in Object Oriented Programming is encapsulation. Restricting access to internal
variables not only secure the Class/Object against corruption (no data validation), it is also a maintenance issue.
Hiding the implementation details allows the flexibility of underlying implementation to change.

Referenced By:

Maintainability
Java Security
Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:
1) Test: [G1342.1]
Do classes directly expose internal data members?
Procedure:
Make sure all internal class variables are declared private or protected.
Example:

None.

Page 346

Part 5: Developer Guidance

G1343
Statement:

Declare classes final to stop inheritance and prevent methods from being overridden.

Rationale:

Utility classes and classes that do not intend to be extended (classes used for user authentication) should lock
down their implementation. Locking implementation can prevent methods from being overridden. Not locking down
implementation can cause corruption of internal class data or allow errant code to run. For example, imagine the
possibility of a class that performs credit card processing that can be overridden.

Class implementation can be locked down by declaring the class or methods final.

Referenced By:

Interoperability
Maintainability
Java Security

Evaluation Criteria:

1) Test: [61343.1]
Are sensitive, security related, and utility classes declared final?
Procedure:

Check classes used in Security related processing (authentication, authorization) final keyword.

Check classes that have sensitive data (social security numbers, medical data, and salary information) for final
keyword.

Check Utility classes for final keyword.
Example:

None.

Page 347

Part 5: Developer Guidance

G1344
Statement:

Encrypt sensitive data stored in configuration or resource files.

Rationale:

Sensitive data used for application configuration files (XML), user profiles, or resource files should be protected
from tampering. The sensitive data should be encrypted and or a message digest or checksum should be
calculated to check for tampering. Application should handle generation, accessing and storing data to these files.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Application Resource Security

Interoperability

Design Tenet: Encryption and HAIPE

Evaluation Criteria:
1) Test: [61344.1]
Is sensitive data in configuration files and user profiles?
Procedure:

Check properties files, XML configuration files or user profiles for sensitive data in the clear.

Check for an application to edit, and creation of the file.
Example:

None.

Page 348

Part 5: Developer Guidance

G1346
Statement:

Audit database access.
Rationale:

Auditing is critical for data access traceability. If the RDBMS was attacked, auditing is essential not only for figuring
out what had occurred but also to recover lost data. Database access auditing provides logs for each access or
change to the database by a given user (or an IP address for systems without user authentication).

Often current middle tier technologies (e.g., J2EE, .Net, CORBA, etc.) share database connections and may only
have a single database user. Thus the burden is on the middle tier to know the identity of each user and be able to

pass this information on the database (e.g., design each table to have data items such as updated by, created by,
etc.).

Referenced By:

RDBMS Security

Other Design Tenets

Design Tenet: Identity Management, Authentication, and Privileges
Maintainability

Evaluation Criteria:
1) Test: [61346.1]
Does the application database include actual user rather than database connection owner?
Procedure:

Check system documentation, database tables, and audit logs to verify that database access audit entries are created
for each database access.

Example:

None

Page 349

Part 5: Developer Guidance

G1347
Statement:

Secure remote connections to a database.
Rationale:

Just because the database is behind the corporate firewall does not mean someone inside the firewall cannot
access or listen in on the wire.

Net-centricity implies that a database should be on the network and not constrained to be sitting behind an
application server. This means that many unanticipated users may eventually access the database. Thus,
database security should not be based on isolation.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
RDBMS Security

Interoperability

Design Tenet: Decentralized Operations and Management

Evaluation Criteria:

1) Test: [61347.1]
Is data exchanged between the database and client secure?
Procedure:

Check for secure protocol (e.g., SSL) between application and database.
Check for secure data access by IP address.

Check for configuration in the database (user) which limits user from a specified host.
Example:

None.

Page 350

Part 5: Developer Guidance

G1348
Statement:

Log database transactions.

Rationale:

Transaction logging is generally handled by the database management system and records all changes made to
the database, critical for data recovery and traceability.

Referenced By:

Maintainability
Other Design Tenets
RDBMS Security

Evaluation Criteria:
1) Test: [61348.1]
Are database transactions logged?
Procedure:

Commercial database management systems have a feature to log database transactions. Check to determine whether
the feature has been turned on in the database management system.

Example:

None.

Page 351

Part 5: Developer Guidance

G1349
Statement:

Validate all input that will be part of any dynamically generated SQL.

Rationale:

Not validating or filtering parameters used in dynamically generated SQL statements can lead to SQL injection
attacks.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
RDBMS Security

Other Design Tenets

Interoperability

Validate Input

Evaluation Criteria:

1) Test: [61349.1]
Does the database use filtering or data validation code?
Procedure:

Filter out character like single quote, double quote, slash, back slash, semi colon, extended character like NULL, carry
return, new line, etc, in all input strings.

Example:

Page 352

Part 5: Developer Guidance

G1350
Statement:

Implement a strong password policy for RDBMS.

Rationale:

Clean database installation often contains no passwords for root users. Also, new user accounts often defaults to
no password or standard password. Having no passwords allows users access any data. Database users should
always be given strong passwords. This implies a non null password, locking unused user accounts and ensuring
that system user accounts are not using default passwords

Referenced By:

RDBMS Security
Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Evaluation Criteria:

1) Test: [61350.1]
Does the database user table include passwords?
Procedure:

Check for null or empty values for passwords in the user table.

Use a commercially available or open source default password analysis tool to ensure that all user accounts do not
retain default passwords and to ensure that all passwords are strong.

Example:

None.

Page 353

Part 5: Developer Guidance

G1351
Statement:

Enhance database security by using multiple user accounts with constraints.

Rationale:

Constrain access to individual tables and functions by creating multiple user accounts for an application and
constraining the accounts to specific functions. As a general policy, user accounts should be constrained to
the minimal required database access. For example, creation of a read only account should be constrained by
granting only select on the tables of interest to the read only user. This aids in password management as well
as limiting the potential impact of SQL injection attacks. By granting only insert on a table, for example, and not
granting select, the user could in effect create a write only database.

Each application will have different requirements in regards to grants and access to tables. If one application is
compromised, it will not affect the other applications.

It also has traceability to determine which application has allowed a security violation.

Referenced By:

Interoperability
Design Tenet: Identity Management, Authentication, and Privileges
RDBMS Security

Evaluation Criteria:

1) Test: [61351.1]
Does each database application user have account constraints in accordance with the user function?
Procedure:

Check each database application user to ensure that the account constraints are in accordance with the user function
and do not have unwarranted privileges. For example, check that read only application user accounts have only read
access enabled.

Example:

None.

Page 354

Part 5: Developer Guidance

G1352
Statement:

Use database clustering and redundant array of independent disks (RAID) for high availability of data.

Rationale:

Database clusters combined with RAID technology (e.g., data striping and mirroring) can help ensure continued
operation of a system that suffers hardware or software failure.

Referenced By:

RDBMS Security

Design Tenet: Availability
Maintainability

Design Tenet: Scalability
Interoperability

Evaluation Criteria:
1) Test: [61352.1]
Is the system designed to support high availability?
Procedure:

Check for the existence of a cluster and/or failover capability.

Check for the existence of RAID data storage for the database.
Example:

None.

Page 355

Part 5: Developer Guidance

G1356

Statement:

Use the SOAP standard for all Web services.

Rationale:

The Web services security specifications are designed as an extension of SOAP. The specs are unusable without
SOAP.

Referenced By:

Reusability

XML Web Service Security

Design Tenet: Open Architecture

Interoperability

Maintainability

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [61356.1]

Does the Web service user generate SOAP formatted XML messages?
Procedure:

Generate a test message and check it for SOAP compliance.
Example:

None.

2) Test: [G1356.2]

Does the Web service provider generate SOAP formatted XML?
Procedure:

Generate a test message and check it for SOAP compliance.
Example:

None.

Page 356

Part 5: Developer Guidance

G1357
Statement:

Do not rely solely on transport level security like SSL or TLS.
Rationale:

Web services inherently involve multiple intermediaries between the message sender and the ultimate destination.
The intermediaries may not use transport level security. SSL and TLS do not provide end-to-end security, only
security at the transport layer and only point-to-point. The use of SSL or TLS should depend on the needs of

the system. For sensitive applications, augment the use of SSL/TLS with defense in depth measures such as
message-level security mechanisms.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

XML Web Service Security

Design Tenet: Encryption and HAIPE

Design Tenet: Mediate Security Assertions

Evaluation Criteria:
1) Test: [61357.1]
Does the Web service user generate encrypted XML messages?
Procedure:

Generate a test message and check it for encryption.

Example:

2) Test: [61357.2]

Does the Web service provider generate encrypted XML messages?
Procedure:

Generate a test message and check it for encryption.

Example:

Page 357

Part 5: Developer Guidance

Statement:
Bind SOAP Web service security policy assertions to the service by expressing them in the associated WSDL file.
Rationale:

A Web service may be registered in zero, one, or multiple UDDI registries. By placing the security policy assertions
in the Web service's WSDL file, they are readily available to all the consumers of the service regardless how the
service was discovered

Referenced By:

XML Web Service Security

Design Tenet: Mediate Security Assertions
Interoperability

Maintainability

Other Design Tenets

Evaluation Criteria:
1) Test: [61359.1]
Are Web service security policy assertions bound in the service WSDL file?
Procedure:
Check the Web Service's WSDL file for policy assertions.
Example:

None

Page 358

Part 5: Developer Guidance

G1362
Statement:

Validate incoming XML-based messages using a schema.

Rationale:

Prevent malicious agents from compromising the integrity of a service.

Referenced By:

XML Web Service Security

Design Tenet: Identity Management, Authentication, and Privileges
Validate Input

Interoperability

Evaluation Criteria:
1) Test: [61362.1]
Does the Web service provider validate incoming messages?
Procedure:

Identify the existence of an XML Schema file and examine code to verify that all incoming messages are checked to
be XML Valid.

Example:

None

Page 359

Part 5: Developer Guidance

G1363
Statement:

Do not use clear text passwords.

Rationale:

Prevent a hacker from intercepting and seeing a real password.

Referenced By:

XML Web Service Security

Design Tenet: Encryption and HAIPE

Interoperability

Design Tenet: Identity Management, Authentication, and Privileges
Other Design Tenets

Evaluation Criteria:
1) Test: [61363.1]
Does the Web service user utilize a username/password token?
Procedure:
Generate a test message and check it for clear text passwords.
Example:

None

Page 360

Part 5: Developer Guidance

G1364
Statement:

Hash all passwords using the combination of a timestamp, a nonce and the password for each message
transmission.

Rationale:

This Guidance helps to prevent unwanted interception or discovery of clear-text-hashed passwords.

Referenced By:

Design Tenet: Encryption and HAIPE

XML Web Service Security

Other Design Tenets

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Evaluation Criteria:

1) Test: [61364.1]
Does the Web service user utilize a username/password token?
Procedure:

Generate a test message and check it for a username/password token and verify that is contains a timestamp entry
and a nonce entry.

Example:

None

Page 361

Part 5: Developer Guidance

G1365
Statement:

Specify an expiration value for all security tokens.

Rationale:

Specifying an expiration value for security tokens limits the chance of being able to intercept and use a security
token to impersonate an authenticated user or process.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Other Design Tenets

XML Web Service Security

Evaluation Criteria:
1) Test: [61365.1]
Does the Web service user utilize an expiration for each security token?
Procedure:
Generate a test message and check it to make sure an expiration is associated with each security token.
Example:

None

Page 362

Part 5: Developer Guidance

G1366
Statement:

Digitally sign all messages where non-repudiation is required.

Rationale:
Prevent hackers from changing intercepting and modifying a message.

Note: Non-repudiation cannot be assured with soft certificates.

Referenced By:

XML Web Service Security

Design Tenet: Identity Management, Authentication, and Privileges
Design Tenet: Encryption and HAIPE

Interoperability

Evaluation Criteria:

1) Test: [61366.1]

Does the Web service user digitally sign all messages?
Procedure:

Generate a test message and check it for digital signatures.
Example:

None

2) Test: [G1366.2]

Does the Web service provider digitally sign all messages?
Procedure:

Generate a test message and check it for digital signatures.
Example:

None

Page 363

Part 5: Developer Guidance

G1367
Statement:

Digitally sign message fragments that are required not to change during transport.

Rationale:

Signing message fragments allows the consumer of the message fragment to verify the message fragment has not
changed since the producer signed the message fragment.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

XML Web Service Security

Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [61367.1]

Do message fragments sent between producers and subscribers have digital signatures when the message content
must remain unchanged during transport?

Procedure:

Check system requirments for message fragments that must be transmitted unchanged between the producer and
consumer. For these message frangments, check that digital signature are used to detect changes to the message
fragments.

Example:

None

Page 364

Part 5: Developer Guidance

G1369
Statement:

Digitally sign all requests made to a security token service.

Rationale:

Prevent hackers from intercepting a message and requesting a security token.

Referenced By:

Interoperability

Other Design Tenets

XML Web Service Security

Design Tenet: Identity Management, Authentication, and Privileges
Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [61369.1]

Does the Web service user digitally sign all messages?
Procedure:

Generate a test message and check it for digital signatures.
Example:

None

2) Test: [G1369.2]

Does the Web service provider digitally sign all messages?
Procedure:

Generate a test message and check it for digital signatures.
Example:

None

Page 365

Part 5: Developer Guidance

G1371
Statement:

Use the Digital Signature Standard for creating Digital Signatures.

Rationale:

Following Industry standards ensures interoperability.

Referenced By:

Design Tenet: Encryption and HAIPE

Interoperability

XML Web Service Security

Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:

1) Test: [61371.1]

Does the Web service user generate signatures using the Digital Signature Standard?
Procedure:

Generate a test message and check it for compliance with the Digital Signature Standard.
Example:

None

2) Test: [G1371.2]

Does the Web service provider generate signatures using the Digital Signature Standard?
Procedure:

Generate a test message and check it for compliance with the Digital Signature Standard.
Example:

None

Page 366

Part 5: Developer Guidance

G1372
Statement:

Use an X.509 Certificate to pass a Public Key.

Rationale:

This ensures that the owner passing the key is who he says.

Referenced By:

XML Web Service Security

Other Design Tenets

Design Tenet: Identity Management, Authentication, and Privileges
Maintainability

Design Tenet: Encryption and HAIPE

Interoperability

Evaluation Criteria:

1) Test: [61372.2]

Does the Web service provider send a public key as part of its messages?
Procedure:

Generate a test message and check it for an X.509.

Example:

None

2) Test: [G1372.1]

Does the Web service user send a public key as part of its messages?
Procedure:

Generate a test message and check it for an X.509.

Example:

None

Page 367

Part 5: Developer Guidance

G1373
Statement:

Encrypt messages that cross an IA boundary.

Rationale:

Prevent hackers from reading sensitive information.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

XML Web Service Security

Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [61373.1]

Does the Web service user encrypt all messages?
Procedure:

Generate a test message and check it for encryption.
Example:

None

2) Test: [61373.2]

Does the Web service provider encrypt all messages?
Procedure:

Generate a test message and check it for encryption.
Example:

None

Page 368

Part 5: Developer Guidance

G1374
Statement:

Individually encrypt sensitive message fragments intended for different intermediaries.

Rationale:

Individually encrypting message fragments allows targeting individual fragments at different intermediaries along
the message path to the final destination.

Referenced By:

Interoperability

XML Web Service Security

Design Tenet: Encryption and HAIPE

Design Tenet: Identity Management, Authentication, and Privileges

Evaluation Criteria:
1) Test: [61374.1]
Are sensitive fragments of the message encrypted?
Procedure:
Observe messages that are sent to see if the sensitive fragments of the message are encrypted.
Example:

None

Page 369

Part 5: Developer Guidance

G1376
Statement:

Do not encrypt key elements that are needed for correct SOAP processing.

Rationale:

It is possible to encrypt the entire SOAP message, various portions of the SOAP message or the contents of the
data transported within the SOAP message. Encrypting the entire SOAP message requires that any intermediate
processing of the SOAP message requires decryption of the entire message.

Referenced By:

XML Web Service Security

Design Tenet: Encryption and HAIPE
Interoperability

Other Design Tenets

Evaluation Criteria:

1) Test: [61376.1]

Does the Web service user encrypt the entire message?

Procedure:

Generate a test message and check it to make sure the XML tags are not encrypted.
Example:

None

2) Test: [G1376.2]

Does the Web service provider encrypt the entire message?

Procedure:

Generate a test message and check it to make sure the XML tags are not encrypted.
Example:

None

Page 370

Part 5: Developer Guidance

G1377
Statement:

Use LDAP 3.0 or later to perform all connections to LDAP repositories.

Rationale:

Using industry-proven LDAP standards helpe ensure interoperability of the directory repository with its consumers.

LDAP v3 addresses some of the limitations of LDAP v2 in the areas of internationalization and authentication. It
also allows adding new features without also requiring changes to the existing protocol through the use of using
extensions and controls while maintaining backward compatibility with LDAP v2.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Reusability

LDAP Security

Evaluation Criteria:
1) Test: [61377.1]
Check port 636 if supporting secure LDAP (SLDAP)
Procedure:
Test the connection using an SLDAP client.
Example:

None

Page 371

Part 5: Developer Guidance

G1378
Statement:

Encrypt communication with LDAP repositories.

Rationale:

Encryption of communication to LDAP servers helps prevent disclosure of data during transmission.

Referenced By:

Maintainability

Interoperability

Design Tenet: Encryption and HAIPE

Design Tenet: Identity Management, Authentication, and Privileges
LDAP Security

Evaluation Criteria:
1) Test: [61378.1]
Are connections to LDAP repositories encrypted?

Procedure:

Verify that connections to LDAP repository use Transport Layer Security (TLS) or Secure Sockets Layer (SSL).

Example:

Page 372

Part 5: Developer Guidance

G1379
Statement:

Use SAML version 2.0 for representing security assertions.
Rationale:

SAML 2.0 supports XML assertions for supporting cross domain access and Web services. The value of this type
of access is that the passing of an assertion eliminates the need to create another account in another domain.

Referenced By:

Interoperability

Design Tenet: Mediate Security Assertions
Security Assertion Markup Language (SAML)
Design Tenet: Cross-Security-Domains Exchange

Evaluation Criteria:
1) Test: [61379.1]
Can the SAML message be validated against SAML V2.0 schema?
Procedure:

Validate SAML message against SAML V2.0.

Example:

Page 373

Part 5: Developer Guidance

G1380

Statement:

Use the XACML 2.0 standard for SAML-based rule engines.
Rationale:

XACML-based rules can define the mechanism for creating the rule and policy set that enable
meaningful authorization decisions. XAMCL is also integrated with SAML to support role-based access control
or hierarchical resources, such as portions of XML documents.

Referenced By:

Design Tenet: Mediate Security Assertions

Interoperability

Security Assertion Markup Language (SAML)

Design Tenet: Identity Management, Authentication, and Privileges
Design Tenet: Cross-Security-Domains Exchange

Evaluation Criteria:
1) Test: [61380.1]
Does the SAML-based rules engine use the XACML 2.0 standard?
Procedure:

Emulate a rule and run against rule engine using SOAP messaging.

Example:

Page 374

Part 5: Developer Guidance

G1381
Statement:

Encrypt all sensitive persistent data.
Rationale:

When data is persisted, there is always a chance that the security of the system that stores the data may be
compromised. To minimize the risk, all sensitive data such as passwords and personal information should be
encrypted when it is persisted.

Referenced By:

Interoperability
Design Tenet: Encryption and HAIPE
Data Tier

Evaluation Criteria:
1) Test: [61381.1]
Is all sensitive data that is persisted encrypted?
Procedure:

Look at all data stores and check for encrypted passwords and other sensitive data..

Example:

Page 375

Part 5: Developer Guidance

G1382
Statement:

Be associated with one or more Communities of Interest (COIs).

Rationale:

The DoD Net-Centric Data Strategy emphasizes the establishment of Communities of Interest (COIs). This
strategy introduces management of data within Communities of Interest (COIs) rather than standardizing data
elements across the DoD. Thus all DoD Programs must map to one of more COls. DoD Programs should
participate in COls as a normal course of doing business. They will identity relevant COls; actively collaborate with
them to promote reuse and cross-coordination of metadata; sponsor participation of system developers in the
COl process and where appropriate contribute engineering expertise to the COI as a stakeholder. New programs
should include community collaboration requirements in acquisition documents as required.

Referenced By:

Design Tenet: Make Data Interoperable
Design Tenet: Be Responsive to User Needs
Design Tenet: Make Data Understandable
Reusability

Metadata Registry

Interoperability

Evaluation Criteria:
1) Test: [61382.1]
Is the Program associated with a COI?
Procedure:
Check the DoD Metadata registry to determine whether program is associated with any COI(s).
Example:

None

Page 376

Part 5: Developer Guidance

G1383
Statement:

Use aregistered namespace in the XML Gallery in the DoD Metadata Registry.

Rationale:

The use of the DoD Metadata Registry helps to avoid name collisions and conflicts.

The assignation of a unique registered namespace permits a program to be uniquely identified and categorized.
The DoD's Net-Centric Data Strategy requires that data products be stored in shared spaces to provide access
to all authorized users and that these data products be tagged with metadata to enable discovery of data

by authorized users. The use of a unique registered namespace provides an absolute identifier to products
associated with a particular product and is an XSD schema requirement.

Referenced By:

Interoperability

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Reusability

Metadata Registry

Design Tenet: Make Data Visible

Using XML Namespaces

Design Tenet: Make Data Accessible
Design Tenet: Make Data Trustable
Design Tenet: Provide Data Management
Design Tenet: Be Responsive to User Needs

Evaluation Criteria:
1) Test: [61383.1]
Does the Program have an assigned namespace for its XML data assets?
Procedure:
Check DoD Metadata Registry to determine whether the Program is associated with COI(s).
Example:

None

Page 377

Part 5: Developer Guidance

G1384
Statement:

Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

Rationale:

The DoD Net-Centric Data Strategy requires that XML information resources within a COI in the DoD Metadata
Registry be examined by DoD projects for possible reuse to help foster common standards within a COI and
promote interoperability.

Note: The proposed DoD Metadata Registry tools have not been formally released. The Beta version thereof
is in testing. Automatic Waivers of this requirement will be permitted until the tools are formally released.

Referenced By:

Design Tenet: Make Data Interoperable
Interoperability

Reusability

Design Tenet: Provide Data Management
Design Tenet: Make Data Understandable
Design Tenet: Be Responsive to User Needs
Metadata Registry

Using XML Namespaces

Evaluation Criteria:

1) Test: [G1384.1]
Has the program reused information resources from the DoD Metadata Registry?
Procedure:

Check the XSDs associated with the program to determine whether XSDs referenced by other namespaces have
been used. Check the DoD Metadata Registry to determine whether the Program has registered the reuse of
XML information resources belonging to other namespaces. Reuse is indicated by formally subscribing to selected
components in the registry.

Example:

None

Page 378

Part 5: Developer Guidance

G1385
Statement:

Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that XML Information Resources developed during the course of
a program be identified, examined for usefulness by other DoD Programs in the same or related COls and be
submitted for inclusion in the XML Gallery of the DoD Metadata Registry.

Referenced By:

Design Tenet: Provide Data Management
Design Tenet: Make Data Interoperable
Metadata Registry

Design Tenet: Make Data Trustable
Interoperability

Design Tenet: Make Data Visible

Design Tenet: Make Data Accessible
Using XML Namespaces

Reusability

Evaluation Criteria:
1) Test: [61385.1]
Has the Program submitted new information resources to the DoD Metadata Registry?
Procedure:

Check the XSDs associated with the program namespace to determine whether they have been registered in the DoD
Metadata Registry XML Gallery.

Example:

None

Page 379

Part 5: Developer Guidance

G1386
Statement:

Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata Registry,
using those in the relational database technology which can be reused in the Program.

Rationale:

The DoD Net-Centric Data Strategy requires that DoD Programs examine data element information resources
within a COI in the DoD Metadata Registry for possible reuse to help foster common standards within a COI and
promote interoperability. Elements include US St at e Codes and Country Codes. This reuse is preferential to
reusing existing industry standard data elements or developing new data elements.

Referenced By:

Design Tenet: Provide Data Management
Design Tenet: Be Responsive to User Needs
Reusability

Design Tenet: Make Data Understandable
Interoperability

Metadata Registry

Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [61386.1]
Has the Program reused common database elements?
Procedure:

Check the DoD Metadata Registry Data Element Gallery to determine whether the program has registered database
elements for reuse. Reuse is indicated by formally subscribing to selected components in the registry.

Check the program database to see whether registered have been included therein.
Example:

None

Page 380

Part 5: Developer Guidance

G1387
Statement:

Identify data elements created during Program development for registering in the Data Element Gallery of the
DoD MetaData Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that Programs identify and examine developed data elements for
usefulness by other DoD Programs in the same or related COls and submit the data elements for inclusion in the
Data Element Gallery of the DoD Metadata Registry.

Referenced By:

Design Tenet: Make Data Visible
Interoperability

Metadata Registry

Design Tenet: Make Data Accessible
Design Tenet: Make Data Trustable
Design Tenet: Provide Data Management
Reusability

Evaluation Criteria:
1) Test: [61387.1]
Has the Program submitted common database elements to the DoD Metadata Registry?
Procedure:

Check the DoD Metadata Registry Data Element Gallery to determine whether the program has submitted database
elements for reuse.

Example:

None

Page 381

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

Part 5: Developer Guidance

G1388
Statement:

Use predefined commonly used database tables in the DoD Metadata Registry.
Rationale:

The DoD Net-Centric Data Strategy requires that DoD Programs examine data table information resources within a
COl in the DoD Metadata Registry for possible reuse to help foster common standards within a COl and promote
interoperability. This reuse is preferable to reusing existing industry standard data elements or developing

new data elements. Some examples are Country Code, US St at e Code, Purchase Order Type Code,
Security dassification Code. These tables are found in the Reference Data Set Gallery of the DoD
Metadata Registry.

Referenced By:

Design Tenet: Make Data Understandable
Design Tenet: Be Responsive to User Needs
Metadata Registry

Reusability

Interoperability

Design Tenet: Make Data Trustable

Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [61388.1]
Has the Program reused common database tables?
Procedure:

Check the DoD Metadata Registry to determine whether the program has registered database tables for reuse. Reuse
is indicated by formally subscribing to selected components in the registry.

Check the program database to see whether registered data tables have been included therein.
Example:

None

Page 382

Part 5: Developer Guidance

G1389
Statement:

Publish database tables which are of common interest by registering them in the Reference Data Set Gallery of
the DoD Metadata Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that DoD Programs identify and examine developed data tables for
usefulness by other DoD Programs in the same or related COls and be submit the data elements for inclusion in
the Reference Data Set Gallery of the DoD Metadata Registry.

Referenced By:

Design Tenet: Make Data Accessible

Design Tenet: Provide Data Management
Design Tenet: Make Data Visible

Design Tenet: Make Data Interoperable
Design Tenet: Make Data Trustable
Interoperability

Metadata Registry

Design Tenet: Make Data Understandable
Design Tenet: Be Responsive to User Needs
Reusability

Evaluation Criteria:

1) Test: [61389.1]
Has the Program submitted common database tables to the DoD Metadata Registry?
Procedure:

Check the DoD Metadata Registry Reference Data Set Gallery to determine whether the program has submitted
database tables for reuse.

Example:

None

Page 383

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

Part 5: Developer Guidance

G1390
Statement:

Standardize on the terminology published by relevant Communities of Interest (COIs) listed in the Taxonomy
Gallery of the DoD Metadata Registry.

Rationale:

A taxonomy partitions the body of knowledge associated with a Community of Interest COI and defines the
relationships among component parts. A taxonomy permits classification of concepts associated with a COI.
This in turn provides categories and definitions for discovery tags which aids in information use and retrieval by
authorized users. Program use of COI taxonomies occurs in several places:

1. Taxonomy used to describe information services for discovery.

2. Taxonomies created by the COIl as a means to extend the DoD Discovery Metadata Specification (DDMS)
for data asset discovery.

3. Taxonomies used to support mediation.

Referenced By:

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Design Tenet: Provide Data Management
Metadata Registry

Design Tenet: Make Data Accessible

Design Tenet: Be Responsive to User Needs

Evaluation Criteria:
1) Test: [61390.1]
Has the Program adhered to the standard taxonomies for the COls associated with the program?
Procedure:

Check the DoD Metadata Registry and Taxonomy Gallery to determine whether taxonomies exist for the COI in which
the Program resides.

Example:

None

Page 384

Part 5: Developer Guidance

G1391
Statement:

Identify taxonomy additions or changes in conjunction with the Communities of Interest (COIs) during the
Program development for potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

Rationale:

DoD Programs associated with a specific COI need to identify and submit potential taxonomy changes or additions
to the DoD Metadata Registry to maintain an accurate and effective taxonomy within the COI.

Referenced By:

Design Tenet: Make Data Visible

Design Tenet: Make Data Accessible

Design Tenet: Be Responsive to User Needs
Design Tenet: Make Data Interoperable
Metadata Registry

Design Tenet: Make Data Understandable

Evaluation Criteria:
1) Test: [61391.1]
Has the Program submitted taxonomy additions or changes to the DoD Metadata Registry?
Procedure:
Check the DoD Metadata Registry and to determine whether the program has submitted taxonomy changes for reuse.
Example:

None

Page 385

Part 5: Developer Guidance

G1566
Statement:

Use al t attributes to provide alternate text for non-text items such as images.

Rationale:

This usage aids users in understanding the Web page even if their browsers cannot display images.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test: [61566.1]
Are alt attributes provided for non-text content?
Procedure:
Check for the existence of alt attributes for all Web site non-text content.
Example:

None.

Page 386

Part 5: Developer Guidance

G1713
Statement:

Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a minimum,
provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

Rationale:

Using a CORBA provider that adheres to the minimum CORBA v1.0, specification improves the interoperability
between SCA Operating Environments.

Referenced By:

Software Communication Architecture

Design Tenet: RF Acquisition

Interoperability

Design Tenet: Service-Oriented Architecture (SOA)
Design Tenet: Open Architecture

Composeability

Reusability

Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test: [61713.1]
Does the OE contain middleware that provides the services and capabilities of minimum CORBA?
Procedure:

Check for minimum CORBA compliance in the CORBA provider's documentation.

Example:

Page 387

Part 5: Developer Guidance

G1l714
Statement:

Develop Software Communications Architecture (SCA) applications to use only Operating Environment
functionality defined by the SCA Application Environment Profile.

Rationale:

The SCA Application Environment Profile (AEP) is a subset of the Portable Operating System Interface (POSIX)
specification. Functionality that is not part of the AEP is not guaranteed to be part of the operating environment.
Applications that rely on functionality that is not part of the AEP will require changes to deploy or port to other SCA
platforms.

Referenced By:

Software Communication Architecture

Design Tenet: Open Architecture

Reusability

Design Tenet: Service-Oriented Architecture (SOA)
Composeability

Design Tenet: Accommodate Heterogeneity
Design Tenet: RF Acquisition

Interoperability

Evaluation Criteria:
1) Test: [61714.1]
Does the SCA application use Operating Environment functions not defined by a Application Environment Profile?
Procedure:

Check to see that all Operating Environment calls in the SCA application are listed in an Application Environment
Profile.

Example:

Page 388

Part 5: Developer Guidance

G1717
Statement:

Use constants instead of hard-coded numbers for characteristics that may change throughout the lifetime of the
model.

Rationale:

Constants increase the usefulness and lifetime of a design because the model can adapt to a variety of
environments by postponing or modifying those parameters late in the design cycle. This makes the code more
readable, maintainable and reusable.

Note: This practice has been adapted from Cohen, section 1.6.1.1.3.

Referenced By:

VHDL Coding and Design
Maintainability
Reusability

Evaluation Criteria:

1) Test: [61717.1]
Are there any characteristics that are susceptible to modification that are directly given a value?
Procedure:

Parse the code and look for hard-coded characteristics that are susceptible to change and consider replacing them
with a constant.

Example:

None

Page 389

Part 5: Developer Guidance

G1718
Statement:

Design circuits to be synchronous.

Rationale:

The preferred method of engineering today's digital ICs is based on a synchronous design. The main advantages
of this are simplicity and reliability. Creating synchronous pieces of code increases interoperability and reusability
when they are used with other synchronous modules.

Referenced By:

VHDL Synchronous Design
Maintainability
Reusability

Evaluation Criteria:

1) Test: [61718.1]
Are all flip-flops clocked by the same, common clock signal?
Procedure:

Check to make sure a single external clock signal triggers the design to go from a well defined and stable state to the
next one. On the active edge of the clock, all input and output signals and all internal nodes are stable in either the
high or low state. Between two consecutive edges of the clock, the signals and nodes are allowed to change and may
take any intermediate state.

Example:

None

Page 390

Part 5: Developer Guidance

G1719
Statement:

Automate testbench error checking in VHDL development.
Rationale:

Manual verification is subject to human error and is time consuming. In addition, automation promotes increased
maintainability, because it enables fast and reliable verification of a model when modifications are made.

Note: This practice has been adapted from Cohen, section 11.1.1.

Referenced By:

VHDL Testbench
Composeability
Maintainability
Reusability

Evaluation Criteria:
1) Test: [61719.1]
Does the testbench automatically report success or failure for each sub-test that it runs through?
Procedure:
Run the testbench to see if it automatically reports successes or failures for each sub-test.
Example:

None

Page 391

Part 5: Developer Guidance

G1l724
Statement:

Develop XML documents to be well formed.

Rationale:

By W3C definition, XML documents must be well formed. However, documents that contain XML tags that are not
well formed has no name and is often still referred to as an XML Document in common vernacular. Therefore, this
guidance statements helps to clarify the need for well-formed documents. Well formed XML documents are those
documents which have a proper XML syntax. This is essential if the XML is to be parsed using common, readily
available open source and commercial XML parsers.

Referenced By:

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Interoperability

XML Syntax

Design Tenet: Open Architecture

Evaluation Criteria:
1) Test: [61724.1]
Can the XML Document be parsed using a common, readily available XML Parser?

Procedure:

Open the XML document in a browser such as Mozilla Firefox or Microsoft Internet Explorer or use the XML Validator
available from the W3 Schools at: http://www.w3schools.com/xml/xml_validator.asp

Example:

None

Page 392

Part 5: Developer Guidance

G1725
Statement:

Develop XML documents to be valid XML.

Rationale:

The content of a valid XML document conforms to a specific set of user-defined content rules contained in

XML schemas. XML schemas describe data values correctness using predefined datatypes as base types and
assigning values to the datatype specific attributes of those datatypes. For example, if an element in a document
is required to contain text that can be interpreted as being an integer numeric value, and instead contains:
alphanumeric text such as "hello"; is empty; or has other elements in its content, then the document is considered
not valid.

Referenced By:

Design Tenet: Make Data Understandable
Defining XML Schemas

XML Instance Documents

XML Validation

Interoperability

Design Tenet: Open Architecture

Design Tenet: Make Data Interoperable

Evaluation Criteria:
1) Test: [61725.1]
Does the document validation tool indicate that the XML document is valid?
Procedure:
Use a validating parser and verify that the document is valid.
Example:

None.

Page 393

Part 5: Developer Guidance

G1726

Statement:
Define XML Schemas using XML Schema Definition (XSD).
Rationale:

While it is possible to use Document Type Definitions (DTD) to convey much of the same information as the
XML Schema Definition (XSD), XSDs have a several distinct advantages which are very useful in terms of
interoperability. For example, DTDs do not capture domain or type range information very well (i.e. elevation in
meters is from 0 to 12,000).

XML Schemas are a tremendous advancement over DTDs. Here are some of the reasons to use XSDs versus
DTDs as delineated by Roger Costello in an XML tutorial (see the XML Schema Tutorial available at http://
www.xfront.com):

. Enhanced datatypes support:
. 44+ in XSDs versus 10 in DTDs
. Support for user defined datatypes. For example, a user can define a new type based on the string
type. Elements declared of this type must follow this specific pattern ddd-dddd, where d represents a
numeric digit.
. Written using the same syntax as other XML instance documents. This means there is less to remember and
more consistency with the same rules applying to all XML instance documents.
XSDs support a limited Object-oriented (OO) paradigm. For example, new types can be derived from
previously defined types with more or more stringent restrictions.

. Supports a kind of polymorphism where elements can be interchanged with parent or child elements. For
example, a "Book" element can be substituted for the "Publication" element.

. Supports the definition of elements that are unordered collections or sets of other elements.
. Support for the identification of elements as part of a unique key.
. Support for elements that have the same name but different content

. Support for elements that have a null (i.e., nil) value.

Referenced By:

Design Tenet: Provide Data Management
Defining XML Schemas

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Interoperability

Design Tenet: Open Architecture

Evaluation Criteria:

1) Test: [61726.1]

Are XML schemas defined using XML Schema Definitions?

Page 394

http://www.xfront.com
http://www.xfront.com

Part 5: Developer Guidance

Procedure:

Verify that XML schemas are defined using W3C XML Schema Definitions rather than Document Type Definitions.
Example:

None.

Page 395

Part 5: Developer Guidance

G1727
Statement:

Provide names for XML type definitions.

Rationale:

By naming type definitions in a schema, the type definitions can be reused in any number of other definitions. For
example:

<xsd: conpl exType nane="Poi nt O Cont act ">

<xsd: sequence>
<xsd: el ement nane="Last Name" type="xsd:string"/>
<xsd: el ement nanme="First Name" type="xsd:string"/>
<xsd: el ement nanme="M ddl eNane" type="xsd:string"/>
<xsd: el ement nanme="N ckNanme" type="xsd:string"/>
<xsd: el ement nanme="PhoneNunber" type="xsd:string"/>

</ xsd: sequence>

</ xsd: conpl exType>

Can be reused anywhere a Point-Of-Contact needs to used. For Example:

<xsd: conpl exType nanme="Project">

<xsd: sequence>
<xsd: el ement nane="Proj ect Nane" type="xsd:string"/>
<xsd: el ement nane="Progr anmvanager" type="Poi nt O Contact"/>
<xsd: el ement nane="Har dwar eManager" type="Poi nt O0f Contact"/>
<xsd: el ement nane="Sof t war eManager" type="Poi nt Of Contact"/>
<xsd: el ement nane="Confi gurati onManager" type="Poi nt Of Contact"/>

</ xsd: sequence>
</ xsd: conpl exType>

Referenced By:

Maintainability

Defining XML Types

Interoperability

Versioning XML Schemas

Design Tenet: Make Data Understandable
Design Tenet: Open Architecture

Evaluation Criteria:
1) Test: [61727.1]

Do all complexTypes have names associated with them?

Procedure:

Examine all the complexType elements in the schema and verify that they have a name associated with them.

Example:

<xsd: conmpl exType nane="Poi nt Of Cont act" >

Page 396

Part 5: Developer Guidance
‘ </ xsd: conpl exType>

2) Test: [G1727.2]

Do all simpleTypes have names associated with them?

Procedure:

Examine all the simpleType elements in the schema and verify that they have a name associated with them.

Example:

<xsd: si npl eType name="Poi nt & Cont act ">

</ xsd: si nmpl eType>

Page 397

Part 5: Developer Guidance

G1728
Statement:

Define types for all XML elements.

Rationale:

There are two ways to associate the type-like information within an XML Schema. The first way is define an XML
element as a global element of the schema element and the second is to define a complex or simple type. The
first method violates G1727 and it does not support the clean separation of the definition of types from the use of
the types.

By separating the definition of the types from the definition of the elements within structures, the types can be
reused and are loosely coupled from any particular instance of the domain. The definitions of the type information
can be maintained by a community that wishes to share the definition rather than any particular implementation or
instance.

Referenced By:

Design Tenet: Make Data Understandable
Design Tenet: Open Architecture
Maintainability

Defining XML Types

Interoperability

Evaluation Criteria:

1) Test: [61728.1]

Does the schema define any elements that are defined using references to other elements that are not part of a
substitutionGroup rather than types?

Procedure:
Look for the use of an element's ref attribute.
Example:

None.

Page 398

Part 5: Developer Guidance

G1729
Statement:

Annotate XML type definitions.

Rationale:

Types in a schema represent a particular concept or aspect within a particular subject domain. Providing
documentation about the type within the schema itself helps prevent disconnects between the documentation and
the implementation as captured by the type definition.

Referenced By:

Design Tenet: Make Data Interoperable
Design Tenet: Make Data Understandable
Design Tenet: Provide Data Management
Design Tenet: Open Architecture
Maintainability

Defining XML Types

Evaluation Criteria:
1) Test: [61729.1]
Do all the types defined within a schema have annotation that describes the nuances of type?
Procedure:
Look for an annotation for each simple type and complex type defined in the schema.
Example:

The complex type warranty includes an annotation that describes the purpose of the type and any caveats on when/
how to use it.

Page 399

Part 5: Developer Guidance

G1730
Statement:

Follow an XML coding standard for defining schemas.

Rationale:

There are any number of coding standards that are defined for coding XML Schemas. Here are some areas
covered by the most popular:

. Elements and Types are Upper Camel Case (UCC) convention.
. Type names end with the word Type.

. Attributes start with a lowercase letter and then revert to Lower Camel Case (LCC) convention.

Referenced By:

Maintainability
Defining XML Schemas
Interoperability

Evaluation Criteria:
1) Test: [61730.1]
Is there a consistent XML coding convention followed when schemas are defined?
Procedure:
Look for the occurrence of a XML coding standard and verify that the XML Schemas follow the standard.
Example:

None.

Page 400

Part 5: Developer Guidance

G1731
Statement:

Only reference XML elements defined by a Type in substitution groups.

Rationale:

The 35mm, disk, and 3x5 components are simply declared as standalone XML elements which may be
substituted for the abstract RecordingMedium element.

Note: All of these RecordingMedium components have a type that is the same as, or derived from, the
RecordingMediumType.

Note: The abstract RecordingMedium is associated with a type, RecordingMediumType, rather than defining
the structure as part of the RecordingMedium element. This allows the definition of the RecordingMedium
structure (i.e. type) to evolve independently.

Referenced By:

Using XML Substitution Groups
Maintainability

Evaluation Criteria:
1) Test: [61731.1]
Do substitutionGroup references point to an abstract element that has a structures defined by a type?
Procedure:
Ensure that all substitutionGroups point to an abstract element that has a structures defined by a type.
Example:

None.

Page 401

Part 5: Developer Guidance

G1735
Statement:

Use the . xsd file extension for files that contain XML Schema definitions.

Rationale:

It is possible to use any name for a schema file extension. However, using any extension other than . xsd causes
confusion for humans as well as tools and utilities which rely on MIMEs often mapped to file extensions.

Referenced By:

Maintainability
XML Schema Files

Evaluation Criteria:
1) Test: [61735.1]
Is the file extension that contains the schema definition .xsd?
Procedure:
Make sure that all XML documents that contain the xml schenma tag have a file extension of .xsd.
Example:

None.

Page 402

Part 5: Developer Guidance

G1736
Statement:

Separate document schema definition and document instance into separate documents.
Rationale:

Separating the definition of the schema from the document instance supports the modularity by separating the
definition of structure from the actual data. Each is allowed to evolve and change independently. In most cases,
the definition of the structure of the data should be relatively static compared with the number of documents that
are shared using that schema.

Document name: Camera.xsd

<xsd: schema
t ar get Nanespace="htt p://ww. caner a. or g"
el enent For nDef aul t =" qual i fi ed">
<xsd: i ncl ude schemaLocati on="Ni kon. xsd"/>
<xsd: i ncl ude schenaLocati on="0d ynpus. xsd"/>
<xsd: i ncl ude schemaLocati on="Pent ax. xsd"/>
<xsd: el enent nane="Canera" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent
nanme=" Body"
t ype="BodyType"/ >
<xsd: el enent
nane="Lens"
type="LensType"/>
<xsd: el enent
narme=" Manual Adapt er"
t ype="Manual Adapt er Type"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: schema>

Document name: Camera.xml

<?xm version="1.0"?>
<Canera xm ns ="http://ww. canera. org"

xsi : schemalLocati on=
“http://ww. canmera.org
Caner a. xsd" >
<Body>
<Descri ption>
Er gononi cal | y desi gned casi ng for easy handling
</ Description>
</ Body>
<Lens>
<Zoonm>300nmmk/ Zoonw
<F- St op>1. 2</ F- St op>
</ Lens>
<Manual Adapt er >
<speed>1/ 10, 000 sec to 100 sec</speed>
</ Manual Adapt er >
</ Caner a>

Referenced By:

XML Schema Files

Page 403

Part 5: Developer Guidance

Maintainability
XML Instance Documents

Evaluation Criteria:
1) Test: [61736.1]
Does the instance document have a <schema> tag?
Procedure:
Check the instance document and look for the use of the schema tag or the use of the XMLSchema namespace.
Example:

None.

Page 404

Part 5: Developer Guidance

G1737
Statement:

Define a target namespace in schemas.
Rationale:

A target namespace describes the namespace for all the schema components defined by the schema. Without a
target namespace, all enclosed schema components are not associated with a namespace and if a namespace
prefix is not associated with the target namespace then all references to these schema components must be
unqualified. By not specifying a target namespace, ambiguity can arise when the schema is integrated with other
schemas. This can cause unnecessary naming collisions.

Note: http://www.library.org is the target namespace as well the lib namespace. See the third
targetNamespace line of the following code sample.

<?xm version="1.0"?>
<xsd: schema
t ar get Nanespace="http://ww. | ibrary. org"

el enent For nDef aul t =" qual i fi ed">
<xsd: i ncl ude schemaLocati on="BookCat al ogue. xsd"/>
<xsd: el enent nane="Li brary">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="BookCat al ogue" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="1ib: Book"
maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

Referenced By:

Using XML Namespaces

Design Tenet: Open Architecture
Interoperability

Design Tenet: Make Data Interoperable
Design Tenet: Make Data Understandable

Evaluation Criteria:
1) Test: [61737.1]
Does the schema declare a target namespace?
Procedure:

Check the definition of all schemas and look for the assignment of the targetNamespace attribute.

Page 405

Part 5: Developer Guidance
Example:

<xsd: schema

t ar get Nanespace="http://ww. | ibrary. org"
>

</ xsd: schema>

Page 406

Part 5: Developer Guidance

G1738
Statement:

Define a qualified namespace for the target namespace.

Rationale:

To force all schema components defined by the schema to be qualified and to belong to a namespace, associate a
qualified namespace with the target namespace. This causes all components defined within the namespace to be
explicitly associated with a namespace. In other words, all components are always qualified.

Note: http://www.library.org is the target namespace as well the lib namespace. See the forth xmins:lib line
of the following code sample.

<?xm version="1.0"?>
<xsd: schema
t ar get Nanespace="http://ww. | ibrary. org"

el enent For nDef aul t =" qual i fi ed">
<xsd: i ncl ude schemaLocati on="BookCat al ogue. xsd"/>
<xsd: el enent nane="Li brary">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="BookCat al ogue" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="1ib: Book"
maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

Referenced By:

Design Tenet: Open Architecture

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Using XML Namespaces

Evaluation Criteria:
1) Test: [61738.1]
Does the schema declare a qualified namespace for the target namespace?
Procedure:

Check the definition of all schemas and look for the assignment of the targetNamespace attribute and make sure there
is also a qualified namespace with the same name.

Page 407

Part 5: Developer Guidance
Example:

In this example, the targetNamespace and the qualified namespace lib both have the same URI associated with them.

<xsd: schema

t ar get Namespace="http://ww. | i brary. org"
>

</ xsd: schema>

Page 408

Part 5: Developer Guidance

G1740
Statement:

Append the suffix Type to XML type names.

Rationale:

Syntactically, XML allows names within a namespace to be reused as long as they do not define the same XML
Schema component. Therefore, a type and an element can both have the same name. A parser can easily
differentiate the components, but a human can not. In order to maintain maintainable "user-friendly" code,
differentiate types and elements by adding a type suffix for types.

Referenced By:

Defining XML Types
Maintainability

Evaluation Criteria:
1) Test: [61740.1]
Do all the complex type names end in the type suffix?
Procedure:
Examine all the complex and simple type schema component definitions and verify that they end in the suffix type.
Example:

None.

Page 409

Part 5: Developer Guidance

G1l744
Statement:

Only reference abstract XML elements in substitution groups.

Rationale:

An abstract XML element can not have its type instantiated in an instance document. This means that the element
used as the basis for the substitution group and all the members of the substitution group must be derived from the
same type.

Referenced By:

Maintainability
Using XML Substitution Groups

Evaluation Criteria:

1) Test: [61744.1]
Is the element used as the basis for the substitution group declared to be abstract and is it derived from a type?
Procedure:

Examine all the elements used as the basis for substitution groups and verify that they have been declared as
abstract.

Example:

<xsd: el ement nane="Recor di ngMedi unt'
abstract="true"
t ype="Recor di ngMedi unirype"/ >

Page 410

Part 5: Developer Guidance

G1745
Statement:

Append the suffix Group to substitution group XML element names.

Rationale:

Syntactically, XML allows names within a namespace to be reused as long as they do not define the same

XML Schema component. Therefore, a type and an XML element can both have the same name. A parser can
easily differentiate the components, but a human can not. In order to maintain maintainable "user-friendly" code,
differentiate types and elements by adding a type suffix for types.

Referenced By:

Using XML Substitution Groups
Maintainability

Evaluation Criteria:
1) Test: [61745.1]
Do all the complex type names end in the type suffix?
Procedure:
Examine all the complex and simple type schema component definitions and verify that they end in the suffix type.
Example:

None.

Page 411

Part 5: Developer Guidance

G1746
Statement:

Develop XSLT stylesheets that are XSLT version agnostic.
Rationale:

There are never any guarantees as to the XSLT environment that a stylesheet will be used in. There are ways
of writing code as recommended by the W3C so that the stylesheets operate in XSL Version 1.0, 2.0 and future
releases. See W3C Extensibility and Fallback for XSL Transformations (XSLT) 2.0 for details.

Referenced By:

Design Tenet: Make Data Interoperable
XSLT

Design Tenet: Open Architecture
Interoperability

Evaluation Criteria:

1) Test: [61746.2]

Does the stylesheet support 2.0 and future version portability as defined by the W3C Extensibility and Fallback for
XSL Transformations (XSLT) 2.0?

Procedure:
Look for the use of the use-when attribute in the xsl:value element.

Example:

<xsl : val ue- of
sel ect =" pad($i nput, 10)"
use- when="functi on-avail abl e(' pad', 2)"
/>
<xsl : val ue- of
sel ect
="concat
($input,
string-join
(for $i in
l1to
10 - string-1ength($input)
return ' '

)
X

use-when="not (function-avail abl e(' pad', 2)
">

2) Test: [G1746.1]

Does the stylesheet support version 1.0 and 2.0 portability as defined by the W3C Extensibility and Fallback for XSL
Transformations (XSLT) 2.0?

Page 412

Part 5: Developer Guidance

Procedure:

Look for the use of the xsl:when and xsl:otherwise construct where the 2.0 functions are tested for availability in
the xsl:when branch and the 1.0 functionality is defined in the xsl:otherwise branch. For a comprehensive list of 2.0

functions see the W3Schools site on XPath, XQuery and XSLT Functions.

Example:

<out xsl:version="2.0">
<xsl : choose>
<xsl : when
test="function-avail abl e(' matches')">
<xsl : val ue- of
sel ect ="mat ches($i nput, '[a-z]*"')"/>
</ xsl : when>
<xsl : ot herw se>
<xsl : val ue- of
sel ect =
= "string-length
(translate
($in,
" abcdef ghi j kl mopgr st uvwxyz'

= Q0"
/>
</ xsl : ot herwi se>
</ xsl : choose>
</ out >

Page 413

Part 5: Developer Guidance

G17/51
Statement:

Document all XSLT code.

Rationale:

XSLT is source code and should be internally documented including a file header that describes the purpose of the
transform and any restrictions or caveats associated with the transform.

Referenced By:

Maintainability
XSLT

Evaluation Criteria:
1) Test: [61751.1]
Doe the XSLT have internal comments that document the transform?
Procedure:

Look inside the XSLT code and look for internal comments.

Example:

<xsl : for-each
sel ect ="/transacti ons/transacti on">
<l--
NOTE: Since dates are currently in
| SO fornmat they are in a sorted fornat
and need no nmulti-level sorting
-->
<xsl:sort
or der ="ascendi ng"
sel ect =" @tartdate"/>
<tr>
<t d>
<xsl : val ue- of
sel ect =" @tartdate"/>
</td>
<t d>
<xsl : val ue- of
sel ect =" @lescri pti on"/>

</td>
<t d>
<I# GCet year
1234567890
yyyy/ nmi dd

-->
<xsl : val ue- of
sel ect ="substring(@tartdate, 1,4)"

/>
</td>
<td>
<I# Get nonth
1234567890
yyyy/ nm dd

-->

Page 414

Part 5: Developer Guidance

<xsl : val ue- of
sel ect ="substring(@tartdate, 6,2)"/>

</td>
<t d>
<I# GCet day
1234567890
yyyy/ mm dd
-->

<xsl : val ue- of
sel ect ="substring(@tartdate, 9,2)"/>
</td>
</[tr>
</ xsl : for-each>

Page 415

Part 5: Developer Guidance

Statement:
Declare the XML schema version with an XML attribute in the root XML element of the schema definition.
Rationale:

Formalizing the schema version number through the use of a required XML attribute helps automate the process
of validating the versions. This will reduce unexpected runtime errors that occur when assumptions are made
about the schema that may change over time. (See http://www.xfront.com/SchemaVersioning.html)

Referenced By:

Interoperability

Versioning XML Schemas

Design Tenet: Make Data Understandable
Design Tenet: Open Architecture

Design Tenet: Make Data Interoperable
Maintainability

Design Tenet: Provide Data Management

Evaluation Criteria:

1) Test: [61753.1]
Does the schema definition define a required attribute that captures the version information?
Procedure:

Look at the schema definition file and look for the inclusion of a required attribute that captures the schema version
number. In the following example, the schemaVersion attribute is defined.

Example:

<xs:schema

t ar get Namespace="ht t p: / / ww. exanpl eSchema"
xm ns: xs ="http://ww. w3. or g/ 2001/ XM_Schema"
el ement For nDef aul t =" qual i fi ed"
attribut eFor nDef aul t ="unqual i fi ed"
version="1. 3"

>

<xs: el ement nanme="Exanpl e" >

<xs: conpl exType>

<xs:attribute
nane="schenaVer si on"
type="xs: deci mal "
use="r equi r ed"
/>
</ xs: conpl exType>
</ xs: el ement >

Page 416

http://www.xfront.com/SchemaVersioning.html

Part 5: Developer Guidance

G1/754
Statement:

Give each new XML schema version a unique URL.
Rationale:

This allows the previous versions of the schema to be made available to support uninterrupted processing and
supports an orderly transition. It also allows the users of the schemas to compare and contrast the evolving
schema. http://www.xfront.com/SchemaVersioning.html

Referenced By:

Design Tenet: Open Architecture
Design Tenet: Make Data Interoperable
Maintainability

Versioning XML Schemas
Interoperability

Evaluation Criteria:

1) Test: [61754.1]
Look for the multiple schemas that represent different versions with different URLs.
Procedure:

Look for XSDs that all define a particular schema but can be found at different locations. This can be done by
changing the path to the schema definition or that change the name of the file by adding the version number.

Example:

Changing the file path:

http://ww. sone. or g/ schema/ 1999/ Coi Schema
http://ww. sone. or g/ schema/ 2003/ Coi Schema
http://ww. sone. or g/ schema/ 2006/ Coi Schema

Changing the file name:

http://ww. some. or g/ schena/ Coi Scherma_1999
http://ww. some. or g/ schena/ Coi Scherma_2003
http://ww. some. or g/ schena/ Coi Scherma_2006

Page 417

http://www.xfront.com/SchemaVersioning.html

Part 5: Developer Guidance

G1755
Statement:

Use accepted file extensions for all files that contain XSL code.

Rationale:

It is possible to use any name for an XSL file extension. However, using any extension other than xsl or XSLT
causes confusion for humans as well as tools and utilities which rely on MIMESs often mapped to file extensions.

Referenced By:

XSLT
Maintainability

Evaluation Criteria:
1) Test: [61755.1]
Is the file extension that contains the XSL files .xsl or .xslt?
Procedure:
Make sure that all XSL files have a file extension of .xsl or xslt.
Example:

None.

Page 418

Part 5: Developer Guidance

G1756
Statement:

Isolate XPath expression statements into the configuration data.

Rationale:

XPath expression statements are dependent on the XML Schemas that are associated with the documents.
Consequently they need maintained independently from the applications that use them. Storing the XPath
expression statements externally as part of the configuration data ensures a clean separation of the maintenance
tasks and supports traceability using configuration management tools.

Referenced By:

XPath
Maintainability

Evaluation Criteria:

1) Test: [61756.1]
Are there XPath expression statements embedded as string literals in the application source code?
Procedure:

Look for the occurrence of XPath expression statements or XML Element names defined as strings within the source
code.

Example:

void main (String args)

{. ..
String titleSearchExpression
= "/library/ books/book/title";

} /1 End main

Page 419

Part 5: Developer Guidance

G1759
Statement:

Use a style guide when developing Web portlets.

Rationale:

Portals contain portlets from different sources, and it is important for usability for the portal to have a common look
and feel across all portlets.

Referenced By:

Design Tenet: Make Data Interoperable

Interoperability

Design Tenet: Make Data Understandable

Reusability

Human Factor Considerations for Web-Based User Interfaces

Evaluation Criteria:

1) Test: [61759.1]
Do all portlets comply with a style guide.
Procedure:

Look at development documentation to determine if a style guide exist for web portlets and look for code reviews that
show it was used during development.

Example:

. Ahlstrom, V. & Allendoerfer, K. Web-Based Portal Computer-Human Interface Guidelines, 2004. Retrieved from:
http://hf.tc.faa.gov/products/bibliographic/tn0423.htm (July 2006).

. Web Portal Design Guide , Fernandes, K., Space and Nabal Warfare Systems Center San Diego 2006

Page 420

https://gesportal.dod.mil/sites/necc/architecture/Shared%20Documents/Architecture%20Guidance/Web%20Portal%20Spec%20v11%20Final.doc

Part 5: Developer Guidance

G1760
Statement:

Solicit feedback from users on user interface usability problems.
Rationale:

Active testing and solicitation of input from users helps identify usability problems with the user interface and helps
to identify areas that may reduce performance or require excessive cognitive attention by the user.

Referenced By:

Human-Computer Interaction
Design Tenet: Be Responsive to User Needs

Evaluation Criteria:
1) Test: [61760.1]
Does the program solicit user feedback for user interface usability problems?
Procedure:

Determine if user surveys are conducted on the usability of the system.

Example:

Page 421

Part 5: Developer Guidance

G1l761
Statement:

Provide units of measurements when displaying data.

Rationale:

Displayed units for measurable data provide for better understanding the data and enable reuse of the data. (This
guidance is derived from MIL-STD 1472F)

Referenced By:

Design Tenet: Make Data Interoperable
Human-Computer Interaction
Interoperability

Design Tenet: Make Data Understandable

Evaluation Criteria:
1) Test: [61761.1]
Does the system display units for all measurable data?
Procedure:
Inspect the user interfaces for system and check that units are shown for all measurable data.
Example:

Length displayed as meters
Distance displayed as miles.

Page 422

Part 5: Developer Guidance

G1762
Statement:

Indicate all simulated data as simulated.

Rationale:

Simulated data that is not marked as simulated may be of misinterpreted and can decrease system, user, or
system safety. (This guidance is derived from MIL-STD 1472F)

Referenced By:

Design Tenet: Make Data Trustable
Human-Computer Interaction
Design Tenet: Make Data Understandable

Evaluation Criteria:

1) Test: [61762.1]
Is all simulated data clearly marked as simulated?
Procedure:

Check system inputs and outputs including user interfaces and check that the simulated data is properly labeled as
simulated.

Example:

None.

Page 423

Part 5: Developer Guidance

G1763
Statement:

Indicate the security classification for all classified data.

Rationale:

Displaying classified data without clearing marking the classification can lead to incorrect assumptions about
the data. This can lead to improperly use of the data or prevent the data from being reused due to lack of clear
understanding of the classification. (This guidance is derived from MIL-STD 1472F)

Referenced By:

Interoperability

Design Tenet: Make Data Accessible
Design Tenet: Make Data Understandable
Design Tenet: Make Data Trustable
Human-Computer Interaction

Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [61763.1]

Does the system display classification markings for all classified data?

Procedure:

Check the system outputs and user interfaces for classification marking for all classified data or systems.
Example:

Classification banners on monitors
Classification banners on printouts

Page 424

Part 5: Developer Guidance

G1770
Statement:

Explicitly define the Data Distribution Service (DDS) Domains for the system.

Rationale:

DDS uses Domains to separate the Global Data Spaces into independent areas. Topics written to one DDS
Domain are completely hidden from the other DDS Domains. Use DDS Domains for isolation (hiding subsystem
data from other parts of the system), modularity, and scalability. In order for systems to benefit from these
advantages, they must explicitly define their own DDS Domains rather than use the default DDS Domain.

Referenced By:

DDS Domains - Global Data Spaces
Design Tenet: Make Data Interoperable
Design Tenet: Open Architecture
Interoperability

Design Tenet: Make Data Understandable

Evaluation Criteria:
1) Test: [61770.1]
Is the system using different Domai nl d values to isolate the subsystems?
Procedure:
Look for multiple calls to creat e_parti ci pant () operation on the Donmai nParti ci pant Fact ory.

Example:

partici pant Factory
= TheParti ci pant Factory;
qui ckQuot er Parti ci pant
= participantFactory->create_partici pant
(QU CK_QUOTER DOVAI N I D,
PARTI Cl PANT_QOS_DEFAULT,
NULL,
DDS: : STATUS MASK_ALL
DE
real ti meQuoterPartici pant
= participant Factory->create_partici pant
(REALTI ME_QUOTER DOMAI N I D,
PARTI Cl PANT_QOS_DEFAULT,
NULL,
DDS: : STATUS MASK_ALL
DE

DDS: : STATUS MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111

Page 425

Part 5: Developer Guidance

G1l771
Statement:

Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the behavior
of a publisher.

Rationale:

DDS relies on the use of QoS characteristics to match publishers with subscribers. If the publishers do not
specify a QoS policy other than the default, much of the power of DDS publishing is lost and the capabilities of the
publisher are not documented.

Referenced By:

DDS Quality of Service
Design Tenet: Differentiated Management of Quality-of-Service
Interoperability

Evaluation Criteria:

1) Test: [61771.2]

Is the get _def aul t _publ i sher _gos operation used to create publisher?
Procedure:

Look for the use of the get _def aul t _publ i sher _gos operation within the code.

Example:

partici pant
= participantFactory->create_partici pant
(QUOTER DOMAI N I D,
PARTI Cl PANT_QOS_DEFAULT,
NULL,
DDS: : STATUS MASK_ALL

DE
DDS: : Publ i sher Qos publ i sher Qos;
Parti ci pant - >get _def aul t _publ i sher _qgos
(publisherQos);

DDS: : STATUS _MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111
2) Test: [G1771.1]

Are values other than the PUBLI SHER _QOS DEFAULT value used to create publishers?
Procedure:

Verify that the PUBLI SHER_QOS_DEFAULT constant is not used within the code.

Page 426

Part 5: Developer Guidance
Example:

DDS: : Publ i sher publisher
= partici pant ->create_publisher
(PUBLI SHER_QOS_DEFAULT,
NULL,
DDS: : STATUS_NMASK_ALL
E

DDS: : STATUS_WMASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111

Page 427

Part 5: Developer Guidance

G1l772
Statement:

Assign a unigue identifier for each Data-Distribution Service (DDS) Domain within the system.

Rationale:

DDS uses Domains to separate the Global Data Spaces into independent areas. Within DDS, a unique identifier
called the Donai nl d identifies each DDS Domain.

Referenced By:

DDS Domains - Global Data Spaces
Design Tenet: Make Data Interoperable
Interoperability

Evaluation Criteria:
1) Test: [61772.1]
Is there a single value for the Domai nl d used for each Domain when the cr eat e_parti ci pant operation is used?
Procedure:
Look for the use of the cr eat e_parti ci pant operation within the code.

Example:

partici pant Factory
= TheParti ci pant Factory;
qui ckQuot er Parti ci pant
= participant Factory->create_partici pant
(QU CK_QUOTER DOVAI N I D,
PARTI Cl PANT_QOS_DEFAULT,
NULL,
DDS: : STATUS MASK_ALL

real ti meQuoterPartici pant
= participant Factory->create_partici pant
(REALTI ME_QUOTER DOMAI N I D,
PARTI Cl PANT_QOS_DEFAULT,
NULL,
DDS: : STATUS MASK_ALL
DE

DDS: : STATUS _MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111

Page 428

Part 5: Developer Guidance

G1773
Statement:

Use #i ncl ude guards for all headers.

Rationale:

Including a guard prevents including a header file more than once. There are two basic kinds of guards: internal
and external. Internal guards occur in each header file that is to be included. External guards occur in a file that
includes a header file. In the past, there were compiling performance issues using internal guards because the

file had to be scanned each time the file was included. This has been optimized away by most modern compilers.
Furthermore, external guards are fragile and tightly coupled since the file including the header and header file must
use the same guard name.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 24.

Referenced By:

Reusability
C++ Header Files
Maintainability

Evaluation Criteria:
1) Test: [61773.1]
Do all header files contain include guards?
Procedure:
Check each file that is included using a #i ncl ude statement to make sure it has an include guard.
Example:

An internal guard looks like this:

Page 429

Part 5: Developer Guidance

G1l774
Statement:

Make header files self-sufficient.
Rationale:

To enable code reuse, each unit of code should be able to be compiled independently without having to follow a
predetermined build order or having to know the dependencies. Code is difficult to reuse when the dependencies
are not clearly documented. Therefore, ensure each header is capable of being used by itself (i.e, it can be
compiled standalone) by having it include all the headers upon which it depends.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 23.

Referenced By:

Maintainability
C++ Header Files
Reusability

Evaluation Criteria:
1) Test: [61774.1]
Can each class be compiled by itself without having to compile other units?
Procedure:
Compile each class as a standalone file and check compile output for errors caused by missing definitions.
Example:

None

Page 430

Part 5: Developer Guidance

G1775
Statement:

Do not overload the logical AND operator.
Rationale:

The logical AND operator has a special relationship with the compiler. When a logical AND operator is written

to overload the inherent operators, the precedence of operation (i.e., left side of operator or right side of
operator) is undefined. This can result in compiler dependency. In the following code, it is not clear whether the
Di spl ayPr onpt will execute first or the Get Li ne operation will executed first.

if (DisplyPronpt() && GetlLine())

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 30.

Referenced By:

Reusability
Maintainability
C++ Operator Overloading

Evaluation Criteria:
1) Test: [61775.1]
Is the logical AND operator defined?
Procedure:
Look for the overloading of the logical AND operator.
Example:

None

Page 431

Part 5: Developer Guidance

G1776
Statement:

Do not overload the logical OR operator.
Rationale:

The logical OR operator has a special relationship with the compiler. When a logical OR operator is written to
overload the inherent operators, the precedence of operation (i.e., left side of operator or right side of operator) is
undefined. This can result in compiler dependency.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 30.

Referenced By:

C++ Operator Overloading
Reusability
Maintainability

Evaluation Criteria:
1) Test: [61776.1]
Is the logical OR operator defined?
Procedure:
Look for the overloading of the logical OR operator.
Example:

None

Page 432

Part 5: Developer Guidance

G1l777
Statement:

Do not overload the coma operator.
Rationale:

The comma operator has a special relationship with the compiler. When a comra operator is written to overload the
inherent operators, the precedence of operation (i.e., left side of operator or right side of operator) is undefined.
This can result in compiler dependency.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 30.

Referenced By:

C++ Operator Overloading
Maintainability
Reusability

Evaluation Criteria:
1) Test: [61777.1]
Is the comma operator defined?
Procedure:
Look for the overloading of the conma operator.
Example:

None

Page 433

Part 5: Developer Guidance

G17/78
Statement:

Place all #i ncl ude statements before all namespace usi ng statements.

Rationale:

Files that are included can contain their own usi ng clauses. In order to make sure that the usi ng statements are
not overridden by these subsequent using definitions, place all using statements after all include statements.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 59.

Referenced By:

C++ Namespaces and Modules
Reusability
Maintainability

Evaluation Criteria:
1) Test: [61778.1]
Are all the usi ng statements defined after all the #i ncl ude statements?
Procedure:
Scan all files and make sure that all the usi ng statements occur after all usi ng statements.
Example:

None

Page 434

Part 5: Developer Guidance

G1779
Statement:

Explicitly namespace-qualify all names in header files.

Rationale:

Header files are meant to be included by other files. A header file inclusion should not alter the meaning of code
that it is included in as this behavior is unexpected. Therefore, use fully-qualified names in header files and do
not use using directives or declarations. This also promotes clarity in the header file whose main purpose is to
communicate the interface to the implementation class.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 59.

Referenced By:

C++ Header Files

Reusability

C++ Namespaces and Modules
Maintainability

Evaluation Criteria:

1) Test: [61779.1]

Are named fully namespace qualified throughout the header files?
Procedure:

Scan all header files and make sure that all namespaces are fully qualified.
Example:

None

2) Test: [G1779.2]

Are all header files free from using directives or declarations?
Procedure:

Scan all header files to determine that they do not contain using directives or declarations.
Example:

None

Page 435

Part 5: Developer Guidance

G1796
Statement:

Explicitly define all the Data Distribution Service (DDS) Domain Topics.

Rationale:

DDS uses Topics to define the information model. Topics are identified by an application-defined string and an
associated data type. Topics represent collections of object sin the Global Data Space; individual data-objects
within a Topic are identified by the value of the key fields which are some special fields inside the data-type.
Applications use Topics to publish the information and subscribe to the information they want.

In a DDS system information exchange happens as a result of publishers and subscribers agreeing to use
the same Topics. Therefore the selection of the Topic names and their semantic meaning is an important part of
system design.

Referenced By:

Messaging within a DDS Domain

Design Tenet: Make Data Interoperable
Interoperability

Design Tenet: Make Data Understandable

Evaluation Criteria:

1) Test: [61796.1]

Are all the Topics (and Topic names) the system uses explicitly defined and captured in a centralized document (e.g.,
Excel table, XML file, dedicated tool)?

Procedure:
Look for documentation that contains listings for all Topics the system uses.
Example:

<topic>
<name>Temperature</name>
<type>TemperatureData</type>
<description>
This topic contains a reading of
a temperature sensor
</description>
</topic>
<topic>

</topic>

Page 436

Part 5: Developer Guidance

G1797
Statement:

Use a minimum of 1024 bits for asymmetric keys.

Rationale:

Strong encryption helps to prevent unauthorized data decryption using modern day resources.

Referenced By:

Design Tenet: Identity Management, Authentication, and Privileges
Interoperability

Encryption Services

Design Tenet: Encryption and HAIPE

Evaluation Criteria:

1) Test: [61797.1]

Are asymmetric key encryption levels at least 1024 bit?

Procedure:

Check the server configuration and verify that the asymmetric keys being used are at least 1024 bit.
Example:

Verified Web server ciphers under the SSL portion of the configuration pages of the administration server.
For Internet Explorer 5.0 and above, click the Hel pHelp menu and then click the About | nt ernet Expl orer
option. The About box will list the Cipher Strength.

2) Test: [G1797.2]

Is the application using domestic (U.S.) grade ciphers?
Procedure:

Verify that the application supports domestic (U.S.) grade ciphers.
Example:

None.

Page 437

Part 5: Developer Guidance

G1798
Statement:

Explicitly define all the Data Distribution Service (DDS) Domain data types.

Rationale:

DDS provides support for writing and reading typed data. For each application data type, DDS creates the
necessary objects that allow manipulation of the data object. For example, for a given data type named My DT,
DDS creates a MyDTDat aW i t er and MyDTDat aReader .

Knowing the data type of the object allows DDS to marshal the data properly. Consequently, any computer
platform and/or language can process the data properly . For example, DDS performs the proper endianess
transformations, alignment, and adjustment for 32 versus 64 bit platforms.

Knowing the data type is also required for the proper functioning of Cont ent Fi | t er edTopi cs.

Moreover, explicit definition of the data types is required for the tools provided by DDS vendors to display and
manipulate the data properly. Visualization tools, logging and replay, automatic bridging to other middleware, etc.,
all depend on data type transparency.

Referenced By:

Messaging within a DDS Domain

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Interoperability

Evaluation Criteria:

1) Test: [61798.1]

Are all the data types the system uses explicitly defined using IDL which is either manually written or generated from
equivalent UML or XML representations?

Procedure:

Look for the IDL (or equivalent XML) files used to define the types used by the system.
Example:

/1 File MyTpes.idl
struct MyType
{
| ong x;
| ong v;
string<10> units;

}s

Page 438

Part 5: Developer Guidance

G1799
Statement:

Explicitly associate data types to the Data Distribution Service (DDS) Topics within a DDS Domain

Rationale:

A DDS Topic represents a homogeneous collection of data-objects in the Global Data Space. All data-objects
within a Topic share a common data-type. Knowledge of the type associated with the Topic is required for an
application to be able to publish and subscribe data on the Topic.

Referenced By:

Interoperability

Messaging within a DDS Domain

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [61799.1]
Do all Topics have an explicit association to a data type.
Procedure:

Look for documentation that lists the Topics in use by the system and verify that each Topic has a data type
associated with it

Example:

<topic>
<name>Temperature</name>
<type>TemperatureData</type>
<description>
This topic contains a reading of
a temperature sensor
</description>
</topic>
<topic>

</topic>

Page 439

Part 5: Developer Guidance

G1800
Statement:

Explicitly identify Keys within the Data Distribution Service (DDS) data type that uniquely identify an instance of
a data object.

Rationale:

Within each DDS Domain (i.e., Global Data Space) a data-object is identified by the tuple (Topic, Key). The Key
is a set of fields within the data type associated with the Topic that the application has tagged to indicate their role
in uniquely identifying the data object. For example, if the Topic represents a person to the IRS, the Key may be
simply the field containing the social security number.

The proper definition of the key is necessary to allow DDS to implement the KEEP_LAST HI STORY QoS properly
as well as to enforce QoS policies such as DEADLI NE, and OMNERSHI P. It is also necessary in order for DDS to
supply the proper Sample information to the DataReader.

All data types require Keys except in the case where the Topic logically represents a single object, for example
when the Topic represents a Message Queue.

Referenced By:

Messaging within a DDS Domain

Design Tenet: Make Data Interoperable
Design Tenet: Make Data Understandable
Interoperability

Evaluation Criteria:

1) Test: [61800.1]

Does the declaration of the data-type associated with the Topic explicitly designate using one or more of the fields as

a Key?
Procedure:

Examine the IDL (or equivalent XML) files used to define the types used by the system to identify the declaration of
the data-type associated with each Topic (i.e., see if there are any tags that designate which fields form the Key).

Example:

For data types defined using IDL:
struct Sensor Dat a
{
| ong sensor_id; // @ey
fl oat val ue;
string<32> units;
string<64> | ocation;
b
struct DepartingFli ghtDat a
{

string<8> airline_code; [/ @key

| ong flight_nunber; // @ey
string<8> destination_airport_code;
string<2> departing_term nal;

| ong departing_gate;

FlightTi me schedul ed_departure_ti ne;

Page 440

Part 5: Developer Guidance

FlightTime expect ed_departure_tine;
string<32> st at us;

b

Page 441

Part 5: Developer Guidance

G1801
Statement:

Explicitly define a Topic Quality of Service (QoS) for each Data Distribution Service (DDS) Topic within a DDS
Domain.

Rationale:

DDS Topics define the information model of the system. The QoS Policies associated with the Topics define
expectations and constraints that all users (publishers or subscribers) of the Topic should know. Consequently,
definition of the Topic QoS is an important part of the system design.

Referenced By:

Interoperability

Messaging within a DDS Domain

Design Tenet: Differentiated Management of Quality-of-Service
DDS Quality of Service

Evaluation Criteria:

1) Test: [61801.1]

Is there a document that defines the QoS Policies that each Topic uses and does the document that describes the
Topics and their associated data types also provide information on the Topic QoS?

Procedure:

Look at the documents that define the Topics in use and their associated data-types and see if they also define the
Topic QoS.

Example:

Topi c: DepartingAircraft

Type: DepartingAircraftStruct
Q0S: HI STORY ki nd=KEEP_LAST

QS: RELI ABI LI TY ki nd=REL| ABLE
QoS: DEADLI NE dur ati on=15mi nut es
QoS: LI FESPAN duration = 1 hour
Etc.

Page 442

Part 5: Developer Guidance

G1802
Statement:

Catch all Data Distribution Service (DDS) events.

Rationale:

DDS uses listeners to notify the application of relevant events such as mis-matched Topic definitions, QoS
violations, lost samples, etc. Normally these events are dispatched to the most specific entity to which they apply
(e.g., the affected DataReader in the case of the lost sample notification). However under application control the
Dat aReader can "mask" certain events such that they are propagated to the enclosing container entity (e.g. the
Subscriber to which the affected Dat aReader belongs). The DomainParticipant is the ultimate container of all
DDS entities and it is therefore important that it handles (e.g., logs) any events that the contained entities have not
handled.

Referenced By:

Decoupling Using DDS and Publish-Subscribe
Evaluation Criteria:

1) Test: [61802.1]
Is a non-nil listener specified when the Domai nPar t i ci pant is created?
Procedure:

Look at the arguments passed to the cr eat e_domai n_parti ci pant operation on the
Domai nPar ti ci pant Fact ory and check the values of the listener and mask arguments.

Example:

partici pant Factory
= TheParti ci pant Factory;
partici pant
= participantFactory->create_partici pant
(QUOTER DOMAI N I D,
PARTI Cl PANT_QOS_DEFAULT,
NULL,
DDS: : STATUS MASK_ALL
DE

DDS: : STATUS _MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

Page 443

Part 5: Developer Guidance

G1803
Statement:

Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe real-time
messaging criteria for Publishers.

Rationale:

DDS relies on the use of a QoS set of characteristics to match publishers with subscribers. If the publishers do
not specify a QoS policy other than the default, much of the power of DDS publishing is lost and the capabilities of
the publisher are not documented.

Referenced By:

DDS Quality of Service
Design Tenet: Differentiated Management of Quality-of-Service
Interoperability

Evaluation Criteria:
1) Test: [61803.2]
Is the get _def aul t _publ i sher _gos operation used to create publisher?
Procedure:

Look for the use of the get _def aul t _publ i sher _gos operation within the code.

Example:

partici pant
= participantFactory->create_partici pant
(QUOTER DOMAI N I D,
PARTI Cl PANT_QOS_DEFAULT,
NULL,
DDS: : STATUS MASK_ALL

DE
DDS: : Publ i sher Qos publ i sher Qos;
Parti ci pant - >get _def aul t _publ i sher _qgos
(publisherQos);

DDS: : STATUS _MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

2) Test: [G1803.1]
Is the PUBLI SHER QOS DEFAULT value used to create publishers?
Procedure:

Look for the use of the PUBLI SHER QOS DEFAULT constant within the code.

Page 444

Part 5: Developer Guidance
Example:

DDS: : Publ i sher publisher
= partici pant ->create_publisher
(PUBLI SHER_QOS_DEFAULT,
NULL,
DDS: : STATUS_NMASK_ALL
E

DDS: : STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

Page 445

Part 5: Developer Guidance

G1804
Statement:

Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe DataWriter.

Rationale:

DDS relies on the use of QoS characteristics to match a Dat aW i t er with each DataReader of the same Topic.
If the Dat aW i t er does not specify a QoS policy other than the default, much of the power of DDS publishing is
lost and the capabilities of the Dat aW i t er are not documented.

Referenced By:

Design Tenet: Differentiated Management of Quality-of-Service
Interoperability
DDS Quality of Service

Evaluation Criteria:
1) Test: [61804.2]
Is the get _defaul t _datawriter_qos operation used to create participant?
Procedure:

Look for the use of the get _def aul t _dat awri t er _qos operation within the code.

Example:

DDS: : Dat aWiter Qos dataWi t er Qos;
publ i sher->get _defaul t_datawiter_gos
(dataWiterQos);
DDS: : DataWiter dataWiter
= publisher ->create_datawiter
(nyTopi c,
dataWi t er Qos,
NULL,
DDS: : STATUS MASK_ALL
DE

DDS: : STATUS _MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.
2) Test: [G1804.1]

Is the DATAVWRI TER_QOS_DEFAULT value used to create Dat aW i t er ?

Procedure:

Look for the use of the DATAWRI TER_QOS DEFAULT constant within the code.

Example:

‘ DDS: : DataWiter dataWiter

Page 446

Part 5: Developer Guidance

= participant->create_datawiter
(nyTopi c,
DATAVWRI TER_QOS_DEFAULT,
NULL,
DDS: : STATUS_NMASK_ALL
E

DDS: : STATUS MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

Page 447

Part 5: Developer Guidance

G1805
Statement:

Explicitly define the Data Distribution Service (DDS) Quality of Service (QoS) Policies to describe the behavior
of the Subscriber.

Rationale:

DDS relies on the use of QoS set of characteristics to match subscribers with publishers. If the subscribers do not
specify a QoS policy other than the default, much of the power of DDS subscription and publishing is lost and the
requirements of the subscriber are not documented.

Referenced By:

Design Tenet: Differentiated Management of Quality-of-Service
Interoperability
DDS Quality of Service

Evaluation Criteria:

1) Test: [61805.1]

Is the SUBSCRI BER_QOS DEFAULT value used to create subscribers?
Procedure:

Look for the use of the SUBSCRI BER_QOS_DEFAULT constant within the code.

Example:

DDS: : Publ i sher publi sher
= participant->create_subscriber
(SUBSCRI BER_QOS_DEFAULT,
NULL,
DDS: : STATUS MASK_ALL
DE

DDS: : STATUS _MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

2) Test: [G1805.2]

Is the get _defaul t _subscri ber _qos operation used to create subscribers?
Procedure:

Look for the use of the get _def aul t _subscri ber _qos operation within the code.

Example:

partici pant
= participant Factory->create_partici pant
(QUOTER _DONAI N_I D,
PARTI Cl PANT_QOS_DEFAULT,

Page 448

Part 5: Developer Guidance

NULL,
DDS: : STATUS_MASK_ALL

E
DDS: : Subscri ber Qos subscri ber Qos;
Parti ci pant - >get _def aul t _subscri ber_qos
(subscriberQos);

DDS: : STATUS MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

Page 449

Part 5: Developer Guidance

G1806
Statement:

Explicitly define the Request-Offered Data Distribution Service (DDS) Quality of Service (QoS) Policies to
describe the behavior of the DataReader.

Rationale:

DDS relies on the use of QoS characteristics to match a DataWriter with each Dat aReader of the same Topic. If
the Dat aReader does not specify a QoS policy other than the default, much of the power of DDS subscription and
publishing is lost and the requirements of the Dat aReader are not documented.

Referenced By:

Interoperability
Design Tenet: Differentiated Management of Quality-of-Service
DDS Quality of Service

Evaluation Criteria:

1) Test: [61806.1]

Is the DATAREADER _QOS DEFAULT value used to create Dat aReader ?
Procedure:

Look for the use of the DATAREADER QOS DEFAULT constant within the code.

Example:

DDS: : Dat aResder dat aReader
= participant->create_dat areader
(DATAREADER QOS_DEFAULT,
NULL,
DDS: : STATUS MASK_ALL
DE

DDS: : STATUS _MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

2) Test: [G1806.2]

Is the get _def aul t _dat ar eader _qos operation used to create participant?
Procedure:

Look for the use of the get _def aul t _dat ar eader _qos operation within the code.

Example:

DDS: : Dat aReader Qos dat aReader Qos;

publ i sher->get _def aul t _dat ar eader _qos
(dat aReader Qos);

DDS: : Dat aReader dat aReader

Page 450

Part 5: Developer Guidance

= publisher ->create_datareader
(nmyTopi c,
dat aReader Qos,
NULL,
DDS: : STATUS_NMASK_ALL
E

Page 451

Part 5: Developer Guidance

G1807
Statement:

Check the return values of Data Distribution Service (DDS) functions.

Rationale:

Many of the DDS operations return a nil value when the operation does not work. Not checking for these ni |
values can cause unexpected and potentially non-deterministic behavior. Different implementations of the DDS
may even behave differently when these values are used. The following is a list of operations that can return ni | :
. create_publisher

. create_subscriber

. create_topic

. create_contentFilteredtopic

. create_multitoic

. find_topic

. lookup_topicdescription

. create_participant

. lookup_ participant

. create_datawriter

. lookup_datawriter

. create_datareader

. lookup_datareader

. create_readcondition

. create_querycondition

One operation returns HANDLE_NI L when the operation fails.

. | ookup_i nst ance

The remaining operations return a DDS: : Ret ur nCode_t enumerated value that indicates whether the operation
succeeded (DDS: : RETCODE_(X) of else the reason for failure.

Referenced By:

Decoupling Using DDS and Publish-Subscribe

Evaluation Criteria:

Page 452

Part 5: Developer Guidance
1) Test: [61807.2]

Do all invocations of the DDS operations lookup_instance check for a return value of HANDLE NI L?
Procedure:

Examine the code for the use of the lookup_instance operations and make sure they check for the return of a
DDS: : HANDLE NI L value immediately after the operation.

Example:

DDS: : I nst anceHandl e_t i nstanceHandl e

= DDS: : HANDLE NI L;
i nst anceHandl e

= witer->l ookup_instance(instance)
if (instanceHandl e == DDS:: HANDLE NI L)

{ cerr << " "

<< endl;
exit(1);
Y} // End if

2) Test: [G1807.1]
Are all of the DDS operations that can return ni | values checked for the return of a ni | values?
Procedure:

Examine the code for the use of the following operations and make sure they check for the return of a ni | value
immediately after the operation.

. create_publisher

. create_subscriber

. create_topic

. create_contentFilteredtopic
. create_multitoic

. find_topic

. lookup_topicdescription
. create_participant

. lookup_participant

. create_datawriter

. lookup_datawriter

. create_datareader

. lookup_datareader

. create_readcondition

. create_querycondition
Page 453

Part 5: Developer Guidance

Note: Examine the return of any other operation and make sure they check for DDS: RETCODE (K immediately
after the operation.

Example:

DDS: : Publ i sher publisher
= partici pant->create_publisher
(PUBLI SHER_QOS_DEFAULT,
NULL,
DDS: : STATUS_NMASK_ALL

DE
if (publisher == NULL))
{ cerr << "create_publisher failed."
<< endl;
exit(1l);
} // End if

DDS: : STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

3) Test: [G1807.3]
Are all invocations to DDS operations that return a DDS: : Ret ur nCode_t checked for DDS: : RETCODE_(OK?
Procedure:

Examine the code for the use of the operations with prototype returning DDS: : Ret ur nCode_t to make sure they
check for the return of a DDS; : RETCODE_OK immediately after the operation.

Example:

r et code
=witer->wite(#)
if (retcode != DDS:: RETCODE K)
{ cerr << " "
<< endl;
/1 handl e error
Y}/l End if

Page 454

Part 5: Developer Guidance

G1808
Statement:

Handle all Data Distribution Service (DDS) Quality of Service (QoS) contract violations using one of the
Subscriber access APIs.

Rationale:

QoS contract violations typically indicate either a system mis-configuration, or else a transient failure (e.g.,
a network that has been temporarily disconnected). Either way the application must monitor these events to
determine if they are relevant to their operation and consequently take proper corrective action.

Referenced By:

Interoperability
Design Tenet: Differentiated Management of Quality-of-Service
DDS Quality of Service

Evaluation Criteria:

1) Test: [61808.1]

Are all the DDS QoS-related status change events are captured via a DDS Listener or a DDS WaitSet?
Procedure:

Specifically ensure that the following DDS events are handled. Look at the arguments passed to the

create_donmi n_participant,create_datawiter,andcreate_datareader_operations and check that
the listener and mask parameters to verify that the following events are being handled:

. OFFERED_DEADLINE_MISSED_STATUS

+ REQUESTED DEADLINE_MISSED STATUS

« OFFERED_INCOMPATIBLE_QOS_STATUS

« REQUESTED_INCOMPATIBLE_QOS_STATUS

. LIVELINESS_LOST_STATUS

. LIVELINESS_CHANGED_STATUS

Example:

partici pant Factory
= TheParti ci pant Fact ory;
qui ckQuot er Par ti ci pant
= partici pant Fact ory->create_parti ci pant
(QUI CK_QUOTER DOVAI N_I D,
PARTI Cl PANT_QOS_DEFAULT,
parti ci pant Li st ener,
DDS: : STATUS_NMASK_ALL
E

Page 455

Part 5: Developer Guidance
DDS: : STATUS MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

Page 456

Part 5: Developer Guidance

G1809
Statement:

Handle all Data Distribution Service (DDS) events using one of the subscriber access APIs.

Rationale:

Listeners and the dual Condition/WaitSet infrastructure allow applications to be notified when changes occur in a
DCPS communication.

Listeners provide a generic mechanism for the middleware to notify the application of relevant asynchronous
events, such as arrival of data corresponding to a subscription, violation of a QoS setting, etc. Each DCPS
entity supports its own specialized kind of listener. Listeners are related to changes in status conditions. Listener
operations are invoked using a middleware-provided thread.

Conditions and Wi t Set s provide the means for an application thread to block waiting for the same events that
can be received via a Listener. Using a Wi t Set , the application can handle the event in its own thread instead of
the middleware provided thread used for Listeners.

Referenced By:

Decoupling Using DDS and Publish-Subscribe
Evaluation Criteria:

1) Test: [61809.1]
Are all DDS status change events are captured via a DDS Listener or a DDS WaitSet?
Procedure:

Verify that the following DDS events are handled. Look at the arguments passed to the
create_donmai n_partici pant,create_datawiter,andcreate_dat areader_oper ati ons checking that
the listener and mask parameters to verify that the following events are handled:

. | NCONSI STENT_TCOPI C_STATUS

. SAMPLE_LOST_STATUS

. SAMPLE_REJECTED STATUS

. DATA_ON_READERS_STATUS

. DATA_AVAI LABLE_STATUS

. OFFERED_DEADLI NE_M SSED_STATUS

. REQUESTED DEADLI NE_M SSED_STATUS

. OFFERED _| NCOVPATI BLE_QOS_STATUS

« REQUESTED | NCOVPATI BLE_QOS_STATUS

s LI VELI NESS_LOST_STATUS
Page 457

Part 5: Developer Guidance
« LI VELI NESS_CHANGED STATUS

Example:

partici pant Factory
= TheParti ci pant Fact ory;
qui ckQuot er Par ti ci pant
= partici pant Fact ory->create_parti ci pant
(QUI CK_QUOTER DOVAI NI D,
PARTI Cl PANT_QOS_DEFAULT,
parti ci pant Li st ener,
DDS: : STATUS_NMASK_ALL
E

DDS: : STATUS_MASK_ALL is part of DDS 1.3, prior releases require application to use 0x11111111.

Page 458

Part 5: Developer Guidance

G1810
Statement:

Use data models to document the data contained within the Data Distribution Service (DDS) Data-Centric
Publish Subscribe (DCPS).

Rationale:

DCPS contains static and raw data that can be used is any number of views or objects. As a consequence,
changes in the definition of the data, its DDS Domains or its structure can have a huge cascading effect. To
minimize the impact of these changes, data needs to be documented in a data model that is not subject to
implementation.

Referenced By:

Design Tenet: Make Data Understandable
Design Tenet: Make Data Interoperable
Reading/Writing Objects within a DDS Domain
Interoperability

Decoupling Using DDS and Publish-Subscribe

Evaluation Criteria:
1) Test: [61810.1]
Is there a conceptual data model that captures the data within the DCPS?
Procedure:

Look for a data model that captures the data within the Data-Centric Publish-Subscribe (DCPS). The following is a
very short list of some of the files extensions that may contain data models.

CDM Conceptual model file (PowerDesigner)

PDM Physical model file (PowerDesigner)

ER1 ERWin file

ERX ERWin file

ERM Entity Relationship Diagram Model file (Prosa)
Example:

Page 459

Part 5: Developer Guidance

G1862
Statement:

Configure Active Directory for Smart Card Logon.

Rationale:

This is a DoD requirement; DoD Instruction 8520.2 [R1206] and DoD Directive 8190.3 [R1297] refer and Joint Task
Force-Global Network Operations (JTF-GNO) Communications Tasking Order (CTO 06-02) specifically directs
implementation of Smart Card Logon (SCL) on all NIPRNet networks.

Referenced By:
Smart Card Logon
Evaluation Criteria:

1) Test: [G1862.1]

Is Active Directory configured for SCL?
Procedure:

Verify that Active Directory is configured for SCL?
Example:

None.

Page 460

Part 5: Developer Guidance

G1869
Statement:

Configure Domain Controllers for Smart Card Logon.

Rationale:

This is a DoD requirement; DoD Instruction 8520.2 [R1206] and DoD Directive 8190.3 [R1297] refer, and Joint Task
Force-Global Network Operations (JTF-GNO) Communications Tasking Order (CTO 06-02) specifically directs
implementation of Smart Card Logon (SCL) on all NIPRNet networks.

Referenced By:
Smart Card Logon
Evaluation Criteria:

1) Test: [61869.1]

Is the Domain Controller configured for SCL?
Procedure:

Verify that the Domain Controller is configured for SCL.
Example:

None.

Page 461

Part 5: Developer Guidance

G1883
Statement:

Use a DoD PKI code signing certificate to sign mobile code residing on DoD-owned or DoD-controlled servers.

Rationale:

DoD Instruction 8552.01 [R1292] requires providing a DoD PKI issued code-signing certificate for all DoD-owned
or DoD controlled servers. DoD code-signing certificates must be used to sign mobile code that will reside on DoD
servers whenever possible.

Referenced By:

Mobile Code

Evaluation Criteria:

1) Test: [61883.1]

Is mobile code residing on a DoD-owned or DoD-controlled server signed by a DoD code signing certificate from an
approved DoD PKI Certificate Authority?

Procedure:

Verify that the mobile code has been signed.
Verify that the certificate was issued by a DoD PKI Certificate Authority that issues code signing certificates.

Example:

For signing mobile code using Mozilla/Netscape SignTool:

. How to Sign Applets Using RSA-Signed Certificates: http://java.sun.com/j2se/1.4.2/docs/guide/plugin/
developer_guide/rsa_signing.html

. Netscape Certificate Management System Administrator's Guide, Appendix F: http://docs.sun.com/
source/816-5531-10/app_sign.htm

. Code Signing Digital IDs for Netscape Object Signing: http://www.verisign.com/resources/gd/objectSigning/
index.html

For signing Java applets using Java Keytool:

. How to Sign Applets Using RSA-Signed Certificates: http://java.sun.com/j2se/1.4.2/docs/guide/plugin/
developer_guide/rsa_signing.html

. Keytool - Key and Certificate Management Tool: http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

. Code Signing Digital IDs for Sun Java Signing: http://www.verisign.com/resources/gd/javaSigning/index.htmi

For signing Microsoft Office VBA macros:

. Code Signing Digital IDs for Microsoft Office 2000/Visual Basic for Applications: http://www.verisign.com/
resources/gd/msOffice/index.html

Page 462

http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/rsa_signing.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/rsa_signing.html
http://docs.sun.com/source/816-5531-10/app_sign.htm
http://docs.sun.com/source/816-5531-10/app_sign.htm
http://www.verisign.com/resources/gd/objectSigning/index.html
http://www.verisign.com/resources/gd/objectSigning/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/rsa_signing.html
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/rsa_signing.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html
http://www.verisign.com/resources/gd/javaSigning/index.html
http://www.verisign.com/resources/gd/msOffice/index.html
http://www.verisign.com/resources/gd/msOffice/index.html

Part 5: Developer Guidance
For signing mobile code using Microsoft Signcode:

. Signing and Checking Code With Authenticode: http://msdn.microsoft.com/workshop/security/authcode/
signing.asp

. Code Signing Digital IDs for Microsoft Authenticode Technology: http://www.verisign.com/resources/gd/
authenticode/index.html

For signing mobile code with Internet Explorer Administration Kit 5.0 or later:

. Code Signing With IEAK 5 and Later: http://support.microsoft.com/default.aspx?scid=kb;en-us;269395

Page 463

http://msdn.microsoft.com/workshop/security/authcode/signing.asp
http://msdn.microsoft.com/workshop/security/authcode/signing.asp
http://www.verisign.com/resources/gd/authenticode/index.html
http://www.verisign.com/resources/gd/authenticode/index.html
http://support.microsoft.com/default.aspx?scid=kb;en-us;269395

Part 5: Developer Guidance

G1884
Statement:

Configure browsers to use Category 1A allowed mobile code per DoD Instruction 8552.01. [R1292]
Rationale:

Required by DoD Instruction 8552.01 [R1292] to only allow ActiveX and Shockwave movies in browsers.

Note: Microsoft Internet Explorer version 6/SP2 or version 7 is the only browser that is capable of executing
ActiveX controls in compliance with the Category 1 usage restrictions.

Note: The lack of mobile code in a system does not constitute a waiver for the system.

Referenced By:

Mobile Code
Evaluation Criteria:
1) Test: [G1884.1]
Is the Ibrowser properly configured to comply with the Category 1A usage restrictions for ActiveX and Shockwave
controls?

Procedure:

Verify configuration of the browser to comply with Category 1A usage restrictions for ActiveX and Shockwave.
Example:

Page 464

Part 5: Developer Guidance

G1885
Statement:

Configure browsers to disable Category 1X prohibited mobile code per DoD Instruction 8552.01. [R1292]

Rationale:

Required by DoD Instruction 8552.01 [R1292] to disable the following prohibited Category 1X mobile code in
browsers:

Mobile code scripts that execute in Windows Scripting Host or WSH (e.g., JavaScript and VBScript downloaded via
a Uniform Resource Locator [URL] file reference or email attachment)

. HTML Applications (e.g., . HTAfiles) that download as mobile code
. Scrap objects

. Microsoft Disk Operating System (MS-DOS) batch scripts

. Unix shell scripts

. Binary executables (e.g., . exe files) that download as mobile code

Note: The lack of mobile code in a system does not constitute a waiver for the system.

Referenced By:
Mobile Code
Evaluation Criteria:

1) Test: [G1885.1]

Is the browser properly configured to disable Category 1X prohibited mobile code?
Procedure:

Verify all Category 1X prohibited mobile code is disabled in the browser.
Example:

Page 465

Part 5: Developer Guidance

G1886
Statement:

Disable automatic execution of mobile code in email clients.

Rationale:

Due to the significant risk of malicious mobile code downloading into user workstations via email, and the ease
of rapidly spreading malicious mobile code via email, the following restrictions apply to all types of mobile code in
email independent of risk category:

. Disable the automatic execution of all categories of mobile code in email bodies and attachments .

. Configure desktop software to prompt the user prior to opening email attachments that may contain mobile
code.

Referenced By:

Mobile Code
Evaluation Criteria:

1) Test: [61886.1]

Is automatic execution of mobile code in email bodies and attachments disabled?
Procedure:

Verify that Category 1X mobile code file types have been disassociated.
Verify that execution of mobile code is disabled in an email body

Verify that execution of mobile code is disabled in an email attachment.

Example:

Some email client products, such as Microsoft Outlook and Outlook Express, use the Windows file type associations

to select the appropriate application to process a file. Disassociating these file types in Windows will prevent the
contents of files with those related file extensions from automatically executing whenever the user selects the file.

2) Test: [G1886.2]

Is the user prompted prior to opening email attachments?
Procedure:

Verify that the user is prompted prior to opening email attachments containing mobile code.
Example:

DoD mobile code policy requires prompting the user prior to opening email attachments that may contain mobile

code. Microsoft Outlook Express and Outlook use the Windows file types and settings. SeaMonkey and Thunderbird

maintain their own internal file type settings. Windows should be configured to prompt users prior to opening
downloaded files. In addition, Windows must be configured to always display all files and file extensions to enable
users to determine the type of file they may be opening.

Page 466

Part 5: Developer Guidance

G1887

Statement:

Monitor configured mobile code-enabled software to ensure it is in compliance with DoD Instruction 8552.01.
[R1292]

Rationale:

The primary foundation for implementing the DoD Mobile Code Policy and protecting against malicious mobile
code is the proper secure configuration of users' desktop workstation software. The policy requires immediate
correction of all identified misconfigurations.

Referenced By:
Mobile Code
Evaluation Criteria:

1) Test: [61887.1]

Is there a plan or process in place to configure mobile code properly on DoD systems?
Procedure:

Verify configuration of workstation and server mobile code-enabled software to be compliant with DoD Instruction

8552.01. [R1292]
Verify that all identified misconfigurations are corrected immediately.

Example:

Page 467

Part 5: Developer Guidance

BP1038
Statement:

Use a sans serif font (e.g., Arial, Verdana) in Web pages rather than a serif font (e.g., Times New Roman).
Rationale:

Web pages are easier to read with sans serif fonts.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Style Sheets

Page 468

Part 5: Developer Guidance

BP1039
Statement:

Do not underline any text unless it is a link.

Rationale:

Underlined text is the default behavior of an HTML link. Many users consider this the norm and may find a Web
page difficult to read if other items are underlined.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Page 469

Part 5: Developer Guidance

BP1040
Statement:

Use hex codes for all colors (e.g., #FFFF33), never the color name (e.g., yellow).

Rationale:

Using hex codes for colors is a common industry practice to increase compatibility between browsers.

For an online hexadecimal color chart, see http://webmonkey.wired.com/webmonkey/reference/color_codes/.

Referenced By:

Style Sheets
Browser-Based Clients

Page 470

http://webmonkey.wired.com/webmonkey/reference/color_codes/

Part 5: Developer Guidance

BP1041
Statement:

Do not change the default colors of the links.

Rationale:

Web pages are easier to read because users have become accustomed to the default colors.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces
Style Sheets

Page 471

Part 5: Developer Guidance

BP1042
Statement:

Do not build a Web page where the horizontal width is greater than the screen (vertical scrolling is fine), planning
for the lowest common denominator to be super-VGA resolution (800 x 600).

Rationale:

This enables a user to print pages on most printers and render pages on most displays.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Page 472

Part 5: Developer Guidance

BP1054
Statement:

Use standard controls that provide input choices for the user.

Rationale:

Using standard controls such as radio buttons, check boxes, list boxes, and drop-downs reduces user input errors
and aids in data integrity.

Referenced By:

Human-Computer Interaction

Page 473

Part 5: Developer Guidance

BP1075
Statement:

All application developers should use the Apache Ant build tool to build, package, and deploy Java EE
applications.

Rationale:

There are several good Integrated Development Environments (IDEs) on the market to support developing J2EE
applications. However, different IDEs tend to auto-generate code that does not port to other IDEs, creating a
problem when sharing code between groups using different IDEs. To minimize these compatibility issues and
development environment turf wars, common building tools need to be used.

Referenced By:

Automate the Software Build Process

Page 474

Part 5: Developer Guidance

BP1076
Statement:

When deploying a new application to a WebLogic application server (e.g., ear, war, rar), do not edit the
WebLogic startup file to add application-specific information. This file is used for server startup only and should
not contain application-specific logic. The system administrator must approve and coordinate all updates to this
file.

Rationale:

Server startup should not depend on an individual application.

Referenced By:

Java EE Environment

Page 475

Part 5: Developer Guidance

BP1077
Statement:

Do not edit the confi g. xi file manually.
Rationale:

The confi g. xm file is the persistent store used by the WebLogic server to store runtime configuration
parameters. Editing the confi g. xml file manually can introduce unpredictable server errors and cause loss of
important configuration data. Instead, use the WebLogic management console to configure the WebLogic server.
Any edits done through the management console will be written to confi g. xmi .

Referenced By:

Java EE Environment

Page 476

Part 5: Developer Guidance

BP1097
Statement:

Use the Syst em Text . St ri ngBui | der class for repetitive string modifications such as appending, removing,
replacing, or inserting characters.

Rationale:

Strings in .NET are immutable. This means that every time a string is created as a result of a string operation such
as concatenation, a new string is created for each intermediate string in a set of operations. This has a lot of string
management overhead. St ri ngBui | der avoids these problems.

Referenced By:

.NET Framework

Evaluation Criteria:
1) Test: [BP1097.1]
Are there repetitive string operations that use string operations instead of St ri ngBui | der operations?
Procedure:
Scan all C# code for repetitive string operations such as appending, removing, replacing, or inserting characters.
Example:

None

Page 477

Part 5: Developer Guidance

BP1098

Statement:

Write all .NET code in C#.

Rationale:

Because of the high degree of similarities between C# and Java, .NET code written in C# is easily ported to
Java. .NET has removed most of the advantages of one language (C#, C++, J++, VB) over another.

Referenced By:

.NET Framework
Evaluation Criteria:
1) Test: [BP1098.1]
Are any .NET languages delivered other than C#?
Procedure:
Scan delivered code for registered .NET file extensions other than C#.
Example:

None

Page 478

Part 5: Developer Guidance

BP1100
Statement:

Compile all .NET code using the .NET Just-In-Time compiler.

Rationale:

There are two different ways to generate machine code within the .NET environment: Just-In-Time (JIT) and
Native Image Generator (NGEN). The NGEN method provides performance advantages by using the native image
cache portion of the global assembly cache, which is specific to the machine where the .NET common language
runtime is installed. It is machine-dependent and is less portable.

Referenced By:

.NET Framework
Evaluation Criteria:
1) Test: [BP1100.1]
Is ngen. exe used?
Procedure:
Scan all delivered code for the use of ngen. exe or the ngen command.
Example:

None

Page 479

Part 5: Developer Guidance

BP1111
Statement:

Mark all Microsoft Message Queue (MSMQ) messages as recoverable.

Rationale:

MSMQ normally only stores the contents of messages in memory, which will be lost if a power, hardware, or
software failure occurs. By marking messages as recoverable, messages are also stored to disk so the contents
can be recovered after a failure.

Referenced By:
Messaging with MSMQ
Evaluation Criteria:
1) Test: [BP1111.1]
Are all messages and message queues marked as recoverable?

Procedure:

Scan the code for the creation of messages and message codes, and make sure each has the r ecover abl e
attribute set to true.

Example:

None

Page 480

Part 5: Developer Guidance

BP1112
Statement:

Specify all Microsoft Message Queue (MSMQ) queues as transactional if they support multiple-step processes.

Rationale:

Transactions allow multi-step processes to behave correctly when a rollback occurs.

Referenced By:

Messaging with MSMQ

Page 481

Part 5: Developer Guidance

BP1116
Statement:

If using Java-based messaging (e.g., JMS), register destinations in Java Naming and Directory Interface (JNDI)
so message clients can use JNDI to look up these destinations.

Rationale:

JNDI is an industry standard for Java-based applications.

Referenced By:

Message-Based Applications
JNDI Security

Page 482

Part 5: Developer Guidance

BP1139
Statement:

Do not use proprietary SQL extensions.

Rationale:

The use of proprietary extensions increases vendor dependence.

Referenced By:
RDBMS Internals
Evaluation Criteria:

1) Test: [BP1139.1]

Have the developers adhered to a core set of features and minimized use of proprietary extensions to the SQL
standard?

Procedure:
Examine a representative sample of database scripts and stored procedures.
Example:

None

Page 483

Part 5: Developer Guidance

BP1140

Statement:

Use SQL-2003 features in preference to SQL-92 or SQL-99.

Rationale:

SQL-2003 includes many XML and OODB extensions and features. Use it in preference to SQL-99 or SQL-92
entry-level features to justify the recommendations against using native XML databases and OODB databases.

Referenced By:

RDBMS Internals

Evaluation Criteria:
1) Test: [BP1140.1]
Have the developers used SQL-2003 features rather than SQL-92 or SQL-99 features?
Procedure:
Examine a representative sample of database scripts and stored procedures.
Example:

None

Page 484

Part 5: Developer Guidance

BP1143
Statement:

Use a database modeling tool that supports a two-level model (Conceptual/Logical and Physical) and
ISO-11179 data exchange standards.

Rationale:

ISO-11179 is a metadata repository standard. Supporting tools store the model locally in an XML file or in a
vendor-specific repository. For many applications, there is no need to use the repository at all. Configuration
Management could be affected by checking the model in and out of a tool such as Source Safe. Entity-
Relationship data model is synonymous with a Conceptual data model.

Referenced By:

RDBMS Internals
Database Development

Evaluation Criteria:
1) Test: [BP1143.1]
Is a database modeling tool being used and does it support the ISO-11179 data exchange standards?

Procedure:

Verify that the requirement for a database modeling tool is included in the system requirements. If ISO-11179
standard-based repository products become available, determine whether the product provides an interface thereto.

Example:

None

Page 485

Part 5: Developer Guidance

BP1145
Statement:

Use vendor-neutral conceptual/logical models.

Rationale:

The leading database vendors do not have a common set of data types or object name length limitations, and
there are no ANSI standards that address these issues. To maintain vendor-neutral models, do not accept vendor-
specific features.

Referenced By:

RDBMS Internals
Reading/Writing Objects within a DDS Domain
Data Modeling

Evaluation Criteria:
1) Test: [BP1145.1]
Has the data model been designed using vendor-neutral design criteria?
Procedure:
Examine the conceptual/logical data model.
Example:

None

Page 486

Part 5: Developer Guidance

BP1227
Statement:

Do not allow installation of MSMQ-dependent clients.

Rationale:

MSMQ-dependent clients require synchronous access to an MSMQ server and create performance issues on the
server. Consequently, dependent clients cannot operate if they are disconnected from the rest of the enterprise
networks.

Dependent clients cannot be run under local accounts.

Dependent clients leave all encrypted messages in plain text between the client and server.

Referenced By:

Messaging with MSMQ
RDBMS Internals

Page 487

Part 5: Developer Guidance

BP1230

Statement:
Do not use the MSMQ Support Local Account sOr NT4 feature.
Rationale:

This entry enables weakened security for Active Directory on a domain controller, which is then replicated to all
other domain controllers in every domain in your forest.

See the Microsoft Message Queuing Web site for additional information.

Referenced By:

Messaging with MSMQ

Page 488

http://www.microsoft.com/windowsserver2003/technologies/msmq/default.mspx

Part 5: Developer Guidance

BP1231
Statement:

Use CORBA: : Stri ng_var in IDL to pass string types in C++.

Rationale:

Follow this practice to correct memory management and reduce memory leaks and runtime faults.

Referenced By:

CORBA
Evaluation Criteria:
1) Test: [BP1231.1]
Is String_var used in the implementation code that was not auto generated?

Procedure:

Check implementation code that was not autogenerated for all occurrences of "string" and verify that they are
String_ var .

Example:

None

Page 489

Part 5: Developer Guidance

BP1232
Statement:

Do not pass or return a zero or null pointer; instead, pass an empty string.

Rationale:

Follow this practice to correct memory management and reduce memory leaks and runtime faults.

Referenced By:

CORBA
Evaluation Criteria:
1) Test: [BP1232.1]
Are there any returns that contain pointers that are assigned zero?

Procedure:

Check code to make sure that all strings returned always have a safety check for zero or null pointers, and assign
them to empty strings.

Example:

None

Page 490

Part 5: Developer Guidance

BP1233
Statement:

Do not assign CORBA: : St ri ng_var type to | NOUT method parameters.

Rationale:

Follow this practice to correct memory management and reduce memory leaks and runtime faults.

Referenced By:

CORBA

Evaluation Criteria:
1) Test: [BP1233.1]
Are there any implementation classes using methods that contain CORBA: : St ri ng_var ?
Procedure:
Inspect CORBA code to make sure | NOUT parameters are not assigned to CORBA: : Stri ng_var values.
Example:

None

Page 491

Part 5: Developer Guidance

BP1234
Statement:

Assign string values to OQUT , | NOUT , or RETURN parameters using operations to allocate or duplicate values
rather than creating and deleting values.

Rationale:

Correct memory management and reduce memory leaks and reduce runtime faults.

Referenced By:

CORBA
Evaluation Criteria:

1) Test: [BP1234.2]
Are new and delete operators being used for strings being assigned to OUT, | NOUT, or RETURN parameters?
Procedure:

Inspect CORBA code to make sure OUT, | NOUT, and RETURN parameters are not using strings managed with the new
and delete operators.

Example:
None
2) Test: [BP1234.1]

Are string_dup,string_allocandstring_free being used?
Procedure:

Search CORBA code for the use of st ri ng_dup, string_alloc,andstring_free.
Example:

None

Page 492

Part 5: Developer Guidance

BP1235
Statement:

Assign string values to returned-as-attribute values using operations to allocate or duplicate values rather than
creating and deleting values.

Rationale:

Follow this practice to correct memory management and reduce memory leaks and runtime faults.

Referenced By:

CORBA
Evaluation Criteria:

1) Test: [BP1235.1]

Are string_dup,string_alloc,andstring_free being used?

Procedure:

Search CORBA code for the use of st ri ng_dup, string_alloc,andstring_free.
Example:

None

2) Test: [BP1235.2]

Are new and delete operators being used for strings being returned-as-attribute?
Procedure:

Inspect CORBA code to make sure returned-as-attribute string values are not using strings managed with the new and
delete operators.

Example:

None

Page 493

Part 5: Developer Guidance

BP1240
Statement:

Present complete and coherent sets of concepts to the user.

Rationale:

The interface should not require the consumer continually to implement multiple interfaces when a single interface
can accomplish the same thing.

Referenced By:

Public Interface Design

Page 494

Part 5: Developer Guidance

BP1241
Statement:

Design statically typed interfaces.

Rationale:

Designing a statically typed interface allows consumers to use early binding rather than late binding. This
minimizes the risk for runtime errors due to late binding.

Referenced By:

Public Interface Design

Page 495

Part 5: Developer Guidance

BP1242
Statement:

Minimize an interface's dependencies on other interfaces.

Rationale:

Minimizing the dependency of an interface on other interfaces simplifies the use of the interface by consumers.

Referenced By:

Public Interface Design

Page 496

Part 5: Developer Guidance

BP1243
Statement:

Express interfaces in terms of application-level types.

Rationale:

Use application-level types to maintain the meaning of values used with the interface. This enables data validation
and other runtime safety checks against the data.

Referenced By:

Public Interface Design

Page 497

Part 5: Developer Guidance

BP1244
Statement:

Use assertions only to aid development and integration.

Rationale:

Assertions allow evaluating Boolean expressions to determine if the code is executing within the proper operating
constraints. For example, if a calculated temperature is supposed to be between -273 degrees and +1,000
degrees, it is possible to test the results of the calculation with an assertion. Once the code is tested and/or
integrated, this calculation no longer needs to occur after each calculation.

Assertion execution is integrated into the compiler. Consequently, it is possible to add it into the executable or
eliminate it by setting compiler options (i.e., switches). Assertions are therefore ideal for adding code that is useful
during development or integration, but wasteful in delivered code.

Referenced By:

Public Interface Design

Evaluation Criteria:

1) Test: [BP1244.1]
Do public methods that implement interfaces have assertions?
Procedure:

Check all implementations of public interfaces to ensure that all public methods that are part of the interface do not
use the assert command.

Example:

The following example shows a correct implementation of a public method in a public interface.

public interface Nanelnterface is
public String getNane
(int namelD)
Throws |11 egal Argument Excepti on
{
/* precondition check */
if (namelD <= 0
|| nanmel D > MAX_NAMES
)
{ throw new ||| egal Argunment Excepti on
("I'l'legal id number: " + nanel D)
}
.1/ Do the conputation
return theResult;
} // End get Nane
} /1 Nanelnterface

The following example shows an incorrect implementation of a public method in a public interface. Do not use the
implementation exemplified by the red code.

public interface Nanelnterface is

Page 498

Part 5: Developer Guidance

public String getNane
(int namelD)
{
/* precondition check */
assert nanelD <= 0
|| namel D > MAX_NAMES
“I'llegal id number: " + namelD);
.1/ Do the conputation
return theResult;
} // End get Nane
} /1 Nanelnterface

Page 499

Part 5: Developer Guidance

BP1246
Statement:

Base Java-based portlets on JSR 168.
Rationale:

JSR 168 enables interoperability between Java portlets and portals. This specification defines a set of APIs
for portal computing that addresses the areas of aggregation, personalization, presentation, and security. http://
www.jcp.org/en/jsr/detail?id=168

Referenced By:

Web Portals

Page 500

http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168

Part 5: Developer Guidance

BP1247
Statement:

Encapsulate Java-based portlets in a .war file.

Rationale:

Storing JSR-168-compliant code in the portal container improves interoperability and code reuse.

Referenced By:

Web Portals

Page 501

Part 5: Developer Guidance

BP1248
Statement:

Follow a naming convention.

Rationale:

The names of schemas, users, tables, and columns need to be unique and descriptive. Unfortunately, it is possible
(but undesirable) to give the same name to multiple objects; for example, assigning the name "employee" to a
database, table, and column. Many naming conventions get around this by appending a suffix that indicates the
kind of object: for example, Enpl oyee_Db, Enpl oyee_Tbl , Enpl oyee_I| d, Enpl oyee_| ndx.

Avoid generic column names such as "ID." Systems often have many kinds of IDs, and even if the system really
only does have a single ID, it will be more difficult to merge with other databases if they have also used the column
name "ID."

Some DBMSs support mixed-case names of unlimited length, while others are case-insensitive. For portability,
assume that names are case-insensitive and limited to 30 characters. Do not use reserved words from the
SQL-92, SQL:1999, or SQL:2003 standards.

Referenced By:

RDBMS Internals
Evaluation Criteria:

1) Test: [BP1248.1]
Is there a naming convention?
Procedure:

Check for the existence of a document that governs naming conventions, or look for patterns in the database
metadata.

Example:

Use database commands to look at the database metadata:

sel ect usernane fromall users
sel ect table nanme from user_tables
sel ect i ndex_name from user i ndexes

Page 502

Part 5: Developer Guidance

BP1249
Statement:

Do not use generic names for database objects such as databases, schema, users, tables, views, or indices.

Rationale:

Assigning generic names to user-defined objects within a database can lead to confusion and unexpected results.
For example, naming a database "instance" within the RDBMS database is confusing to the humans who have to
read commands that reference the database. In addition, the RDBMS software may parse it incorrectly.

Note: Although some RDBMS interpreters allow the use of a generic or reserved word to name objects if the
name is surrounded with quotes, this is not a recommended practice.

Referenced By:

RDBMS Internals
Evaluation Criteria:
1) Test: [BP1249.1]
Are any generic names used for user-defined objects?
Procedure:

Examine the RDBMS metadata for generic names such as database, table, entity, column, attribute, select, view, etc.

Example:
sel ect table_nane from user_tables where table nane in ('database','entity',...)
sel ect columm_nane from user_tab_col ums where colum_nane in ('database','entity',...)

Page 503

Part 5: Developer Guidance

BP1250

Statement:

Use case-insensitive names for database objects such as databases, schema, users, tables, views, and indices.

Rationale:

The SQL standard does not require names to be case-sensitive. Consequently, some DBMSs are not case-
sensitive. Using case-sensitive names, therefore, makes portability more difficult.

Referenced By:

RDBMS Internals
Evaluation Criteria:

1) Test: [BP1250.1]
Are the names of database objects case-sensitive?
Procedure:

Examine the database metadata for "run-on" names. If the database supports case-sensitive names, check to see if it
is using camel-back capitalization.

Example:

EMPLOYEEBENEFI TSTBL
Enpl oyeeBenefit sThl

Page 504

Part 5: Developer Guidance

BP1251
Statement:

Separate words with underscores.

Rationale:

The SQL standard does not require names to be case-sensitive. Consequently, some DBMSs are not case-
sensitive. Using case-sensitive names, therefore, makes portability more difficult. To avoid these problems,
use underscores to separate words (enpl oyee_benef i ts_t bl) rather than camel-back capitalization
(Enpl oyeeBenefitsThl).

Referenced By:

RDBMS Internals
Evaluation Criteria:
1) Test: [BP1251.1]
Are underscores used between the words in the names of database objects?
Procedure:
Examine the database metadata and look for names that do not have underscores separating words.

Example:

EMPLOYEEBENEFI TSTBL ver sus
EMPLOYEE_BENEFI TS_TBL
Enpl oyeeBenefitsThl versus
Enpl oyee_Benefits_Tbl

Page 505

Part 5: Developer Guidance

BP1252
Statement:

Do not use names with more than 30 characters.

Rationale:

Not all DBMSs support unlimited name lengths. For example, Oracle limits object names to 30 characters.
Therefore, using names longer than 30 characters can reduce portability by limiting the DBMSs on which the
system can be deployed.

Referenced By:

RDBMS Internals
Evaluation Criteria:
1) Test: [BP1252.1]
Are any of the database object names more than 30 characters in length?
Procedure:
Examine the database metadata and look for names that are longer than 30 characters.

Example:

W2_EMPLOYEE_BENEFI TS FOR_FAM LI ES_TBL

Page 506

Part 5: Developer Guidance

BP1253
Statement:

Do not use the SQL:1999 or SQL:2003 reserved words as names for database objects such as databases,
schema, users, tables, views, or indices.

Rationale:

Using reserved words as the names of database objects can cause ambiguities and errors. It limits the ability to
upgrade or port the code to other systems.

Referenced By:

RDBMS Internals
Evaluation Criteria:

1) Test: [BP1253.1]

Are any of the SQL:1999 or SQL:2003 reserved words used to hame objects in the database?
Procedure:

Examine the database metadata for names that are in the list of SQL:1999 or SQL:2003 reserved words
Example:

Look for any of these words:

ABS ABSOLUTE ACCESS ACQUI RE ACTI ON ADA ADD ADM N AFTER AGGREGATE ALIAS ALL ALLOCATE ALLOW ALTER AND ANY ARE
ARRAY AS ASC ASENSI TI VE ASSERTI ON ASUTI ME ASYMVETRI C AT ATOM C AUDI T AUTHORI ZATI ON AUX AUXI LI ARY AVG

BACKUP BEFORE BEG N BETWEEN Bl G NT BI NARY BI T Bl T_LENGTH BLOB BOOLEAN BOTH BREADTH BREAK BROWSE BUFFERPOOL
BULK BY

CALL CALLED CAPTURE CARDI NALI TY CASCADE CASCADED CASE CAST CATALOG CCSID CElIL CEl LI NG CHAR CHAR LENGTH
CHARACTER CHARACTER _LENGTH CHECK CHECKPO NT CLASS CLOB CLOSE CLUSTER CLUSTERED COALESCE COLLATE COLLATI ON
COLLECT COLLECTION COLLI D COLUW COMVENT COVM T COVPLETI ON COVPRESS COVPUTE CONCAT CONDI TI ON CONNECT
CONNECTI ON CONSTRAI NT CONSTRAI NTS CONSTRUCTOR CONTAI NS CONTAI NSTABLE CONTI NUE CONVERT CORR CORRESPONDI NG
COUNT COUNT_BI G COVAR_POP COVAR_SAMP CREATE CROSS CUBE CUME DI ST CURRENT CURRENT_COLLATI ON CURRENT_DATE
CURRENT_DEFAULT_TRANSFORM _GROUP CURRENT_LC_PATH CURRENT_PATH CURRENT_ROLE CURRENT_SERVER CURRENT_TI ME
CURRENT_TI MESTAMP CURRENT_TI MEZONE CURRENT_TRANSFORM GROUP_FOR_TYPE CURRENT_USER CURSOR CYCLE

DATA DATABASE DATALI NK DATE DAY DAYS DB2GENERAL DB2SQL DBA DBCC DBI NFO DBSPACE DEALLOCATE DEC DECI VAL DECLARE
DEFAULT DEFERRABLE DEFERRED DELETE DENSE_RANK DENY DEPTH DEREF DESC DESCRI BE DESCRI PTOR DESTROY DESTRUCTOR
DETERM NI STI C DI AGNOSTI CS DI CTI ONARY DI SALLOW DI SCONNECT DI SK DI STI NCT DI STRI BUTED DLNEWCOPY DLPREVI QUSCOPY
DLURLCOVPLETE DLURLCOVPLETEONLY DLURLCOVPLETEWRI TE DLURLPATH DLURLPATHONLY DLURLPATHWRI TE DLURLSCHEME
DLURLSERVER DLVALUE DO DOVAI N DOUBLE DROP DSSI ZE DUMWY DUVMP DYNAM C

EACH EDI TPROC ELEMENT ELSE ELSElI F END END- EXEC EQUALS ERASE ERRLVL ESCAPE EVERY EXCEPT EXCEPTI ON EXCLUSI VE
EXEC EXECUTE EXI STS EXIT EXP EXPLAI N EXTERNAL EXTRACT

FALSE FENCED FETCH FI ELDPROC FI LE FI LLFACTOR FI LTER FI NAL FI RST FLOAT FLOOR FOR FOREI GN FORTRAN FOUND FREE
FREETEXT FREETEXTTABLE FROM FULL FUNCTI ON FUSI ON

GENERAL GENERATED GET GLOBAL GO GOTO GRANT GRAPHI C GROUP GROUPI NG

HANDLER HAVI NG HOLD HOLDLOCK HOST HOUR HOURS

| DENTI FI ED | DENTI TY | DENTI TY_I NSERT | DENTI TYCOL | F | GNORE | MVEDI ATE | MPORT | N | NCLUDE | NCREMENT | NDEX

I NDI CATOR I NI TIAL I NI TIALI ZE I NI TI ALLY I NNER I NOUT | NPUT | NSENSI TI VE | NSERT | NT | NTEGER | NTEGRI TY | NTERSECT
| NTERSECTI ON | NTERVAL INTO IS | SCBI D | SOLATI ON | TERATE

JAR JAVA JO N

KEY KILL

LABEL LANGUAGE LARGE LAST LATERAL LC CTYPE LEADI NG LEAVE LEFT LESS LEVEL LIKE LIMT LINENO LI NKTYPE LN LOAD
LOCAL LOCALE LOCALTI ME LOCALTI MESTAVP LOCATOR LOCATORS LOCK LOCKSI ZE LONG LOOP LOVWER

Page 507

Part 5: Developer Guidance

MAP MATCH MAX MAXEXTENTS MEMBER MERGE METHOD M CROSECOND M CROSECONDS M N M NUS M NUTE M NUTES MOD MODE

MODI FI ES MODI FY MODULE MONTH MONTHS MULTI SET

NAVE NAMED NAMES NATI ONAL NATURAL NCHAR NCLOB NEW NEXT NHEADER NO NOAUDI T NOCHECK NOCOVPRESS NODENANE
NODENUVBER NONCLUSTERED NONE NORMALI ZE NOT NOWAI T NULL NULLIF NULLS NUMBER NUMVERI C NUMPARTS

OBl D OBJECT OCTET_LENGTH OF OFF OFFLINE OFFSETS OLD ON ONLI NE ONLY OPEN OPENDATASOURCE CPENQUERY OPENROABET
OPENXML OPERATI ON CPTI M ZATI ON OPTI M ZE OPTI ON OR ORDER ORDI NARI LI TY OUT OUTER OUTPUT OVER OVERLAPS OVERLAY
PACKAGE PAD PAGE PAGES PARAMETER PARAMETERS PART PARTI AL PARTI TI ON PASCAL PATH PCTFREE PCTI NDEX PERCENT
PERCENT_RANK PERCENTI LE_CONT PERCENTI LE_DI SC Pl ECESI ZE PLAN PQOSI TI ON POSTFI X POAER PREC! S| ON PREFI X PRECRDER
PREPARE PRESERVE PRI MARY PRI NT PRI OR PRI QTY PRI VATE PRI VI LEGES PROC PROCEDURE PROGRAM PSI D PUBLI C

QUERYNO

RAI SERROR RANGE RANK RAW READ READS READTEXT REAL RECONFI GURE RECOVERY RECURSI VE REF REFERENCES REFERENC! NG
REGR_AVGX REGR AVGY REGR COUNT REGR | NTERCEPT REGR R2 REGR SLOPE REGR SXX REGR SXY REGR SYY RELATI VE RELEASE
RENAVE REPEAT REPLI CATI ON RESET RES|I GNAL RESOURCE RESTORE RESTRI CT RESULT RETURN RETURNS REVOKE RI GHT ROLE
ROLLBACK ROLLUP ROUTI NE ROW ROW NUMBER ROACOUNT ROWGUI DCOL ROA D ROWNUM ROAS RRN RULE RUN

SAVE SAVEPOI NT SCHEDULE SCHEMA SCOPE SCRATCHPAD SCROLL SEARCH SECOND SECONDS SECQTY SECTI ON SECURI TY SELECT
SENSI TI VE SEQUENCE SESSI ON SESS| ON_USER SET SETS SETUSER SHARE SHUTDOAN SI GNAL SI M LAR S| MPLE S| ZE SMALLI NT
SOVE SOURCE SPACE SPECI FI C SPECI FI CTYPE SQL SQLCA SQLCODE SQLERROR SQLEXCEPTI ON SQLSTATE SQLWARNI NG SQRT
STANDARD START STATE STATEMENT STATI C STATI STI CS STAY STDDEV_POP STDDEV_SAMP STOGROUP STORES STORPOOL
STRUCTURE STYLESUBPAGES SUBSTRI NG SUCCESSFUL SUM SYMVETRI C SYNONYM SYSDATE SYSTEM SYSTEM USER

TABLE TABLESPACE TEMPORARY TERM NATE TEXTSI ZE THAN THEN TI ME TI MESTAMP TI MEZONE_HOUR Tl MEZONE_M NUTE TO TOP
TRAI LI NG TRAN TRANSACTI ON TRANSLATE TRANSLATI ON TREAT TRI GGER TRI M TRUE TRUNCATE TSEQUAL TYPE

Ul D UNDER UNDO UNI ON UNI QUE UNKNOWN UNNEST UNTI L UPDATE UPDATETEXT UPPER USAGE USE USER USI NG

VALI DATE VALI DPROC VALUE VALUES VAR POP VAR SAMP VARCHAR VARCHAR2 VARI ABLE VARI ANT VARYI NG VCAT VI EW VOLUVES
WAl TFOR WHEN WHENEVER WHERE WMHI LE W DTH_BUCKET W NDOW W TH W THI N W THOUT W.M WORK WRI TE WRI TETEXT

YEAR YEARS

ZONE

Page 508

Part 5: Developer Guidance

BP1255
Statement:

Use surrogate keys.
Rationale:

A surrogate key, also referred to as a system-generated key, database-sequence number, or arbitrary unique
identifier, is a unique, arbitrary primary key. The RDBMS usually generates the surrogate key, but a database
access layer such as the middle tier can also generate the surrogate key. The surrogate key is arbitrary because
it is not derived from any data that exists within the table or the database. Another option for surrogate keys

is Universally Unique Identifiers (UUIDs) (http://en.wikipedia.org/wiki/Universally_Unique_Identifier), the most
common implementation being Microsoft's Globally Unique Identifiers (GUIDs) (http://en.wikipedia.org/wiki/
Globally_Unique_Identifier).

Referenced By:

RDBMS Internals

Page 510

http://en.wikipedia.org/wiki/Universally_Unique_Identifier
http://en.wikipedia.org/wiki/Globally_Unique_Identifier
http://en.wikipedia.org/wiki/Globally_Unique_Identifier

Part 5: Developer Guidance

BP1256
Statement:

Use surrogate keys as the primary key.

Rationale:

Instead of using the natural keys to identify each record uniquely, use a surrogate key. This allows the natural key
information to be modified independently of the primary key and any foreign-key references to the key.

Referenced By:

RDBMS Internals
Database Development

Evaluation Criteria:

1) Test: [BP1256.1]

Are surrogate keys used instead of natural keys?

Procedure:

Look at the database metadata and determine if it uses surrogate or natural keys.
Example:

The following example shows natural keys. The primary keys are made up completely or in part from naturally
occurring data in the tables.

Studenis: Natural Keys
MName Address Phone
Jolm Public 200 4sh 5, B0-555-1254
Hometoram, TTE4A
Jane Do 1N Ekn &ve, B0-555-1212
Hometoram, TTE4A
Courses:
MName Course # MName
Jane Dioe EL0O Intro Bio
Jane Dice [Ni] Trtro Chem
Jane Dice FI Trtro Pl
Jane Dice ETO0 English1
Jolm Public [Ni] Trtro Chem
Jolm Public FI Trtro Pl

If the student name “Tane Doe™ changes, all
occutrences of the name must be changed.

1120

Page 511

Part 5: Developer Guidance

The following example shows a surrogate key being used instead of a natural key. Maintaining data is less complex
than it is with natural keys and consequently less error-prone.

Page 512

Part 5: Developer Guidance

BP1257
Statement:

Place a unique key constraint on the natural key fields.

Rationale:

Surrogate keys make it easier to maintain data. However, a column or set of columns should still uniquely identify
the row in the table. This column or set of columns is the "natural key" or "secondary key." This natural key should
still be protected by the uniqueness constraint normally associated with a primary key.

Referenced By:

RDBMS Internals
Evaluation Criteria:
1) Test: [BP1257.1]
Is there a unique key index for all tables that includes a column or set of columns not including the primary key?

Procedure:

Look at the database metadata to ensure that each table has a unique key, and that the columns in the unique key are
not also part of the primary key.

Example:

Page 513

Part 5: Developer Guidance

BP1258

Statement:

Explicitly define the encoding style of all data transferred via XML.

Rationale:

By default, XML is encoded using Unicode. Consequently, data transferred via XML should explicitly specify the
encoding style. Assuming the default can cause interoperability problems between implementations.

Note: Look for the following XML tag as the first line returned from queries that return XML from the
database:

<?xm version="1.0" encodi ng="UTF-8"?>

Referenced By:

XML Syntax
RDBMS Internals

Page 514

Part 5: Developer Guidance

BP1259

Statement:
Use indexes.

Rationale:

Anindex in an RDBMS is a summary of information organized to minimize the search time. Indexes summarize
the information in a table. So, an employee table might have an index of last names, or last name and first name.

Having additional indexes on tables involves a tradeoff between query performance and insert/update/delete
performance, which requires underlying index maintenance.

Referenced By:

RDBMS Internals

Page 515

Part 5: Developer Guidance

BP1260
Statement:

Define a primary key for all tables.

Rationale:

By definition, a primary key uniquely defines each row within a table. To optimize the use of the table and to find
records by the primary key, there should be an index that enforces the uniqueness of the key.

Referenced By:

RDBMS Internals
Evaluation Criteria:
1) Test: [BP1260.1]
Is there a primary key defined for each table listed in the database?
Procedure:

Examine the database metadata to ensure there is a primary key for each table in the database.

Example:

Page 516

Part 5: Developer Guidance

BP1261

Statement:
Monitor and tune indexes according to the response time during normal operations in the production environment.
Rationale:

Index efficiency depends on the data being indexed. Common variables follow:
. A sparsely populated table versus a densely populated table
. Data added in an presorted order versus a random order

Consequently, as the data changes, the efficiency of the index changes.

Referenced By:

RDBMS Internals

Page 517

Part 5: Developer Guidance

BP1262
Statement:

In the case of Oracle, define indexes against the foreign keys (FK) columns to avoid contention and locking
issues.

Rationale:

Referenced By:

RDBMS Internals

Page 518

Part 5: Developer Guidance

BP1263
Statement:

Gather storage requirements in the planning phase, and then allocate twice the estimated storage space.

Rationale:

Storage space on the disk always poses a problem for databases, so it is necessary to plan storage space
carefully.

Referenced By:

RDBMS Internals

Page 519

Part 5: Developer Guidance

BP1264
Statement:

For high availability, use hardware solutions when geographic proximity permits.
Rationale:

There are many ways to achieve high availability. Some are based on hardware and others on software. As
a general rule, hardware solutions use simple redundancy and are consequently less complex and fragile. If
geographic proximity is not an issue, the hardware solution is preferable.

Referenced By:

RDBMS Internals

Page 520

Part 5: Developer Guidance

BP1265
Statement:

Validate XML idocuments during document generation.

Rationale:

All XML passed between two systems or services must be valid. The XML document generator is responsible for
ensuring that the document is valid and well-formed. If there are problems, the document generator is the only
user that can effectively change the document.

Validity is checked via the use of a W3C Standard Validating parser. These parsers are built into most XML editors
but are also available as stand alone products. Either the XML is valid or diagnostics are returned indicating where
the XML is invalid.

Referenced By:

XML Validation
Evaluation Criteria:
1) Test: [BP1265.1]
Are all the documents exported from the system or service valid and well-formed?
Procedure:
Capture all the documents and validate them, using an XML editor or stand alone XML validation tool.
Example:

None

Page 521

Part 5: Developer Guidance

BP1272
Statement:

Disable dependent child controls when the parentcontrol is inactive.
Rationale:

This practice makes it easier for the user to understand that the child controls depend on the selection of the
parent, contributing to data integrity.

Enter cootrdinates:

® Charey vt prosition
B
() Bounding bhox:

Latitude: I:l
Longitude: []
1122

Referenced By:

Human-Computer Interaction

Page 522

Part 5: Developer Guidance

BP1273
Statement:

Gray out the push button label if a button is unavailable.

Rationale:

This practice makes it easier for the user to understand that the button cannot be used until other action is taken.

| Save | | Orptions... | | |

Default Unavailahle
push button push button

1126

Referenced By:

Human-Computer Interaction

Page 523

Part 5: Developer Guidance

BP1280
Statement:

In tabular data displays, right justify integer data.

Rationale:

Whole numbers, displayed in a column, are easier to read if the digits of the same magnitude (1's, 10's, 100's, etc.)
are vertically aligned.

Referenced By:

Human-Computer Interaction
Evaluation Criteria:

1) Test: [BP1280.1]

Are all tabular whole number data right-justified?

Procedure:

Search all style sheets for the word "text-align." Examine the results for tabular whole number data and make sure the
"text-align" attribute is set to "right"; visual Web page inspection may necessary to see if a defined align style is used
within the tabular data.

Example:

Correct usage:

Cascading style sheet:

.td-itens {
text-align:right;
}

HTML:
Incorrect usage:

No alignment or incorrect alignment used.

Page 524

Part 5: Developer Guidance

BP1281
Statement:

In tabular data displays, justify numeric data with decimals by using the decimal point.

Rationale:

It is common practice to align non-whole numbers by the decimal point for readability.

Referenced By:

Human-Computer Interaction
Evaluation Criteria:

1) Test: [BP1281.1]

Are all tabular non-whole number data justified by decimal point?

Procedure:

Search all style sheets for the word "text-align." Examine the results for tabular non-whole number data and make sure
the "text-align" attribute is set to "."; visual Web page inspection may be necessary to see if a defined align style is
used within the tabular data.

Example:

Correct usage:

Cascading style sheet:

.td-subtotal {
text-align:".";

}

HTML:
Incorrect usage:

No alignment or incorrect alignment used.

Page 525

Part 5: Developer Guidance

BP1290
Statement:

Use a tool tip to display help information about a control when the purpose of the control is not self-evident.

Rationale:

Using a tool tip increases user efficiency by preventing click errors. A mouse over event is the typical mapping for
invoking a tool tip.

[EHome] [Ug] [Previowd [Mext] [Sszrch

1125

Referenced By:

Human-Computer Interaction

Page 526

Part 5: Developer Guidance

BP1291
Statement:

Use obvious navigation controls for moving between pages in search results that span multiple pages.

Rationale:

Obvious navigation controls help a user to identify and use paging controls quickly. For example,

< navigate back one page

> navigate forward one page

<< navigate back to the beginning page
>> forward to the end page

#2 = 3 6 7 = x> (otopage [:::]

1126

Referenced By:

Browser-Based Clients
Human-Computer Interaction

Page 527

Part 5: Developer Guidance

BP1297
Statement:

Structure a Web site hierarchy so users can reach important information and/or frequently accessed functions in a
maximum of three jumps.

Rationale:

Use a shallow structure rather than a deep structure. A user's success at finding a target drops off sharply after
three clicks.

Shallow Structure Deep Structure

[l
NN
iB66 66000 6800 60

1123

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Page 528

Part 5: Developer Guidance

BP1298

Statement:

Provide basic search functionality as the default with a link or button that provides more advanced search features.

Rationale:

This practice makes the search feature cleaner and easier to use because the advanced features are hidden.

| Search

Keynaord: | Dl Trang | | Go |
Advanied § earch

Advanced Search

Search by kevword
Kesnaord: | | Go |

Search by category

Look for docurnents in categc:ry| a1 | Co

11140

Referenced By:

Human-Computer Interaction

Page 529

Part 5: Developer Guidance

BP1299
Statement:

Include a link back to the home page on all Web pages.

Rationale:

A link back to a Web site home page, for example in the form of a logo and a regular HTML link called Hone, helps
users navigate the Web site.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Page 530

Part 5: Developer Guidance

BP1353
Statement:

Use a data abstraction layer between the RDBMS and application for externally-visible applications to prevent the
disclosure of sensitive data.

Rationale:

Large volume commercial online retailers often store customer data in an RDBMS, but they use a data abstraction
layer with limited privileges to access that data from their Web services and other externally-visible applications.
This more fully protects the data in the database from unauthorized access and modification.

Referenced By:

RDBMS Security
Evaluation Criteria:
1) Test: [BP1353.1]
Does the application protect sensitive data by using a data abstraction layer between the application and RDBMS?
Procedure:

Check that sensitive data is not readable and modifiable externally by the application.

Example:

Page 531

Part 5: Developer Guidance

BP1355
Statement:

Do not design the database around the requirements of an application.

Rationale:

Databases often outlive applications (i.e., legacy databases and evolution of applications). Database can also
support multiple applications. If design of the database were around the application, it may present security holes
that other applications could exploit. It is better to design the application around the rules set by the database.

Referenced By:
RDBMS Security
Evaluation Criteria:
1) Test: [BP1355.1]
Is application business logic or rules not found in the database?
Procedure:
Make sure data validation is done at database even if it is already being done at the application level.
Example:

None

Page 532

Part 5: Developer Guidance

BP1360
Statement:

Use the XML Infoset standard to serialize messages.

Rationale:

XML signatures rely on a character-by-character comparison for proper operations. A one character difference is a
different result. So using a standard for serialization is very important to successful communications.

Referenced By:

XML Web Service Security
Evaluation Criteria:

1) Test: [BP1360.1]

Does the Web service user serialize messages using the XML Infoset Standard?
Procedure:

Generate a test message and check it for compliance with the XML Infoset Standard.
Example:

None

2) Test: [BP1360.2]

Does the Web service provider serialize messages using the XML Infoset Standard?
Procedure:

Generate a test message and check it for compliance with the XML Infoset Standard.
Example:

None

Page 533

Part 5: Developer Guidance

BP1375
Statement:

Use asymmetric encryption for SOAP-based Web services.
Rationale:

Most Web services exchange very few messages so the fact that asymmetric encryption is computationally
intensive is a non-issue. Symmetric encryption is more efficient, but it is done by sharing a secret key outside the
SOAP message communication which is less portable.

Referenced By:

XML Web Service Security
Design Tenet: Encryption and HAIPE
Design Tenet: Identity Management, Authentication, and Privileges

Page 534

Part 5: Developer Guidance

BP1392
Statement:

Register services in accordance with a documented service registration plan.

Rationale:

Program information services are provided via a shared space for use by consumers. In order to locate these
services and access the corresponding information provided, the services should be registered in the service
registry per direction of the shared information space manager.

Referenced By:

Design Tenet: Be Responsive to User Needs
Design Tenet: Make Data Visible

Metadata Registry

Design Tenet: Make Data Accessible

Design Tenet: Make Data Interoperable
Design Tenet: Provide Data Management
Design Tenet: Make Data Understandable
Interoperability

Reusability

Evaluation Criteria:
1) Test: [BP1392.1]
Has the Program generated default service definitions and registered them in the DoD service registry?

Procedure:

Review that there is a service definition (URLs, WSDL entries, etc.) for each of the program information services and
that they have been registered accordingly.

Example:

None

Page 535

Part 5: Developer Guidance

BP1394
Statement:

Identify, publish and validate data objects exposed to the enterprise early in the data engineering process and
update in a spiral fashion as system development proceeds.

Rationale:

Referenced By:

Data Modeling

Page 536

Part 5: Developer Guidance

BP1396
Statement:

Develop high-level conceptual data models for new systems prior to Milestone A based on the business process
context in which the system will be used.

Rationale:

An early high-level understanding of the data objects/entities involved in a system can help to clarify the purpose
and context of the system and identify potential downstream interoperability issues.

Referenced By:

Data Modeling

Page 537

Part 5: Developer Guidance

BP1397
Statement:

For new systems, identify and develop use cases or reuse existing use cases as appropriate as early in the data
engineering process as possible to support data model development.

Rationale:

Referenced By:

Data Modeling
Reading/Writing Objects within a DDS Domain

Page 538

Part 5: Developer Guidance

BP1398
Statement:

Develop Interaction models as appropriate.

Rationale:

Referenced By:

Data Modeling

Page 539

Part 5: Developer Guidance

BP1400
Statement:

Programs will use authoritative metadata established by the Joint Mission Threads (JMTs) when available.

Rationale:

Referenced By:

Design Tenet: Joint Net-Centric Capabilities
Data Modeling

Page 540

Part 5: Developer Guidance

BP1404
Statement:

For DoD Programs requiring a data model, the NATO Generic Hub v.5 model (LC2IEDM) is an example of a
successful COI-developed model.

Rationale:

The Land C2 Information Exchange Data Model (LC2IEDM), or Generic Hub (GH, now version 5) model has
been under development in the NATO environment. This model is a rich Joint battlespace operational context
model. Many NATO countries have developed prototypes. The U.S. Army has also been active in the Generic Hub
efforts.

Referenced By:

Reading/Writing Objects within a DDS Domain
Metadata Registry

Page 541

Part 5: Developer Guidance

BP1408
Statement:

Use a semantic description language such as Web Ontology Language (OWL) or Resource Definition
Framework (RDF) to represent an Ontology.

Rationale:

Data producer recommendations are still maturing for how to handle data producers interaction with Web
Ontology Language (OWL) or Resource Definition Framework (RDF).

Referenced By:

Metadata

Page 542

Part 5: Developer Guidance

BP1409
Statement:

Register Web services using Web Services Description Language (WSDL) and Universal Description,
Discovery, and Integration (UDDI).

Rationale:

Ontology languages such as Web Ontology Language (OWL) or Resource Definition Framework (RDF) are
currently immature.

Referenced By:

Metadata

Page 543

Part 5: Developer Guidance

BP1567
Statement:

Use the <abbr > and <acr onyn® tags to specify the expansion of acronyms and abbreviations.

Rationale:

Provides the user with easy access to the meaning of abbreviations and acronyms.

Referenced By:

Browser-Based Clients

Page 544

Part 5: Developer Guidance

BP1568
Statement:

Use a markup language to represent mathematical equations within Web pages.
Rationale:

Use a markup language such as MathML to display equations rather than creating images to display equations.
This provides a more semantic meaning to those who may want to parse and use the equation and also provides
for a more maintainable display of the equation.

Referenced By:

Browser-Based Clients

Page 545

Part 5: Developer Guidance

BP1715
Statement:

Design SCA log services according to the OMG Lightweight Log Service Specification.
Rationale:

One component of the SCA framework is a central logging facility, enabling the asynchronous collection of
informational messages from any component connected to the framework; and the controlled read access

to this information. The Lightweight Logging Service is a free-standing, self-contained service which is not
connected to an event channel or similar infrastructure. Using a standard log service specification between SCA
implementations can improve interoperability and portability.

Referenced By:

Software Communication Architecture
Design Tenet: RF Acquisition

Evaluation Criteria:

1) Test: [BP1715.1]

Is the logging service designed according to the OMG Lightweight Log Service Specification? Is the logging service
designed according to the OMG Lightweight Log Service Specification?

Procedure:
Check the log service provider's documentation for compliance with the OMG Lightweight Log Service Specification.

Example:

Page 546

Part 5: Developer Guidance

BP1716
Statement:

Develop applications for SCA-compliant systems using a standard higher order language.

Rationale:

Developing SCA applications in higher order languages such as C enables independence from platform
dependencies and helps ensure portability.

Referenced By:

Software Communication Architecture
Evaluation Criteria:
1) Test: [BP1716.1]
Does the application use a higher order language such as C rather than a lower order language such as Assembly?
Procedure:

Check what programming language is used to develop the SCA application.

Example:

Page 547

Part 5: Developer Guidance

BP1720
Statement:

Do not use commonly predefined VHDL identifier names for other identifiers.

Rationale:

The use of predefined identifiers causes confusion and some compilers and simulators have difficulty dealing with
such identifiers. This reduces code portability.

Note: This practice has been adapted from Cohen, section 2.1.1.2.

Referenced By:
VHDL Coding and Design
Evaluation Criteria:

1) Test: [BP1720.1]

Are any of the following predefined identifier names used, including the identifiers in the Std and IEEE design libraries:
FF, Time, Min, Ns, Ms, ACK, Real, Std, On?

Procedure:
Check all other identifiers and make sure they are not the names of any predefined identifiers.
Example:

None

Page 548

Part 5: Developer Guidance

BP1721
Statement:

Define a VHDL package for closely related VHDL items that support an application function.

Rationale:

A package represents a module that allows the specification of groups of logically related declarations. Frequently
used pieces of VHDL code are usually written in the form of components, functions, or procedures. These pieces
are then placed into a package and compiled into the destination library. This technique allows code partitioning,
code sharing, and code reuse.

Note: This practice has been adapted from Cohen, section 8.1, and Pedroni, section 10.2.

Referenced By:

VHDL Coding and Design
Evaluation Criteria:
1) Test: [BP1721.1]
Do the packages contain functionally related components, functions and procedures?
Procedure:
Check the code and make sure all packages contain functionally related components, functions and procedures.
Example:

None

Page 549

Part 5: Developer Guidance

BP1722
Statement:

Employ VHDL components for commonly used VHDL described circuits.

Rationale:

A component is a special piece of conventional code that allows the construction of hierarchical designs. In other
words, by declaring a piece of code as a component, that code can then be used within another circuit. This is just
an additional way of partitioning a design and promoting code reuse and composability.

Note: This practice been adapted from Pedroni, section 10.3.

Referenced By:

VHDL Coding and Design
Evaluation Criteria:
1) Test: [BP1722.1]
Are commonly used circuit modules described as components?
Procedure:
Check the code and make sure commonly used circuit modules are described as components.
Example:

None

Page 550

Part 5: Developer Guidance

BP1723
Statement:

Do not use guarded signals.

Rationale:

Guarded signals are not synthesizable and not commonly used. Guarded signals reduce the readability of code
because the guards and drivers are not collected.

Note: This practice has been adapted from Cohen, section 6.2.7.1.

Referenced By:

VHDL Synthesizable Design
Evaluation Criteria:
1) Test: [BP1723.1]
Does the signal kind (e.g. register, bus) appear in a signal declaration?

Procedure:

Check the signal declaration to see if the signal kind is stated. If so, the signal declared is a guarded signal of the kind
indicated.

Example:

None

Page 551

Part 5: Developer Guidance

BP1732
Statement:

Follow the Upper Camel Case (UCC) naming convention for XML Type names.

Rationale:

The predominate style used by most programs or projects is to use the Upper Camel Case (UCC) for type names.
Type names should be easy to differentiate from namespace prefixes and from attributes. Since the namespace
prefix and the type name are separated by a non-whites character (i.e., the colon, :), it is easier to identify the type
name from the namespace name if the type name follows the UCC.

Referenced By:

Defining XML Schemas
Defining XML Types

Evaluation Criteria:
1) Test: [BP1732.1]
Do type names follow the Upper Camel Case (UCC) naming convention?
Procedure:

Examine the schema definition and verify that the type names follow the Upper Camel Case (UCC) name convention.

Example:

<xsd: conpl exType
name="M/Type"

</ xsd: copl exType>

Page 552

Part 5: Developer Guidance

BP1733
Statement:

Follow the Upper Camel Case (UCC) naming convention for XML element names.
Rationale:

The predominate style used by most programs or projects is to use the Upper Camel Case (UCC) for XML
element names. Element names should be easily differentiable from namespace prefixes and from attributes.
Since the namespace prefix and the element name are separated by a non-whites character (i.e., the colon, 3), itis
easier to identify the element name from the namespace name if the element name follows the UCC.

Referenced By:

Defining XML Schemas
Evaluation Criteria:
1) Test: [BP1733.1]
Do element names follow the Upper Camel Case (UCC) naming convention?
Procedure:

Examine the schema definition and verify that the element names follow the Upper Camel Case (UCC) name
convention.

Example:

Page 553

Part 5: Developer Guidance

BP1734
Statement:

Follow the Lower Camel Case (LCC) naming convention for XML attributes.

Rationale:

The predominate style used by most programs or projects is to use the Lower Camel Case (LCC) for XML
attribute names. Attributes are part of an attribute list which is a set of name="value" expressions separated by
whitespace. Therefore, it is easy to find the beginning of the attribute name.

Referenced By:

Defining XML Schemas
Evaluation Criteria:
1) Test: [BP1734.1]
Do type names follow the Upper Camel Case (UCC) naming convention?
Procedure:

Examine the schema definition and verify that the type names follow the Upper Camel Case (UCC) name convention.

Example:

Page 554

Part 5: Developer Guidance

BP1739
Statement:

Use the xsd qualifying prefix for XML Schema namespace.

Rationale:

Syntactically there is no reason why the XML Schema namespace can not be given any qualifier. However, for
readability on the part of humans, using the xsd qualifier is clear, precise, concise and widely accepted.

Referenced By:

Using XML Namespaces
Evaluation Criteria:
1) Test: [BP1739.1]
Does the XML schema use the xsd prefix for the XMLSchema namespace?
Procedure:
Look for the use of the XMLSchema namespace declaration and verify that the prefix is xsd.
Example:

The following is an example of using the xsd prefix for the XML Schema namespace:

<xsd: schenma>

Page 555

Part 5: Developer Guidance

BP1/741

Statement:

Page 556

Part 5: Developer Guidance

BP1742
Statement:

Use the xsi qualifying prefix for XML Schema instance namespace uses.

Rationale:

Syntactically there is no reason why the XML Schema instance namespace can not be given any qualifier.
However, for readability on the part of humans, using the xsi qualifier is clear, precise, concise and widely
accepted.

Referenced By:

Using XML Namespaces
XML Instance Documents

Evaluation Criteria:
1) Test: [BP1742.1]
Does the schema use the xsd prefix for the XMLSchema instance namespace?
Procedure:
Look for the use of the XMLSchema instance namespace declaration and verify that the prefix is xsi.

Example:

The following is an example of using the xsi prefix for the XML Schema instance namespace:

<xsd: schema xml ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >

Page 557

Part 5: Developer Guidance

BP1743
Statement:

Use .xml as the file extension for files that contain XML Instance Documents.

Rationale:

By using the .xml extension for XML Instance Documents that are not associated with an application that requires
another file extension (e.g., html, xslt):

. Readily identifies the file as containing XML to users

. Associates the XML file with various tools that work with XML Documents (i.e., browsers, parsers, validators,
etc.)

Referenced By:
XML Instance Documents
Evaluation Criteria:

1) Test: [BP1743.1]
Are there XML files that do not have the XML file extension or that are associated with specific applications?

Procedure:

Scan the files looking for files that contain XML that are not associated with an application. Examples of files that are

associated with applications or services are .wsdl, .html, .htm and .xsl.
Example:

None.

Page 558

Part 5: Developer Guidance

BP1747
Statement:

Use the xsl qualifying prefix for XSLT namespace.

Rationale:

Syntactically there is no reason why the XSLT namespace can not be given any qualifier. However, for readability
on the part of humans, using the xsl qualifier is clear, precise, concise and widely accepted.

Referenced By:

XSLT
Evaluation Criteria:

1) Test: [BP1747.1]
Does the schema use the xsl prefix for the XSLT namespace?
Procedure:

Look for the use of the XSLT namespace declaration and verify that the prefix is xsl. Make sure there is only one
namespace associated with the Transform XSD: http://www.w3.0rg/1999/XSL/Transform

Example:

The following is an example of using the xsl prefix for the XSL Transform namespace:

<xsl: styl esheet

xm ns: xsl="http://wwmw. w3. or g/ 1999/ XSL/ Tr ansf or nt'
versi on="1.0"
xm ns: xal an="http://xm . apache. or g/ xal an"
xm ns: my-ext="ext1"
ext ensi on- el ement - prefi xes="ny-ext">

Page 559

Part 5: Developer Guidance

BP1748
Statement:

Separate static content from transformational logic in XSLTSs.

Rationale:

Static XML content is content is copied verbatim from a static source, either internally or externally. Internal static
content usually is found within the same input stream as the XSLT content. External static content is obtained from
a different input stream and often comes from files or from data returned from a service.

Separating the static content from the transform logic facilitates maintenance by reducing the risk of unexpected
side effects during the maintenance. In other words, maintenance to the transformational logic is isolated from the
content. Content modifications have no affect on the transformation logic.

Referenced By:

XSLT
Evaluation Criteria:
1) Test: [BP1748.1]
Is static content imported using the xsl:copy element that selects a document?
Procedure:
Look for the intermixing of static content with the XSLT transform code.

Example:

Page 560

Part 5: Developer Guidance

BP1749
Statement:

Use xsl:include for including XSL transforms.

Rationale:

Xsl:include includes other transforms and assigns the same precedence to the imported nodes as the importing
document. This is the preferred method for including entire XSL transforms to allow for composition of multiple
transforms into one that is much bigger.

Referenced By:
XSLT

Evaluation Criteria:
1) Test: [BP1749.1]
Procedure:

Example:

<xsl :include href="Cui dance. xsl"/>

Page 561

Part 5: Developer Guidance

BP1750
Statement:

Use xsl:import for reusing XSL code.

Rationale:

Since xsl:import includes other XSL code with a lower precedence than the importing document, it is best to just
include small snippets of reusable XSL code. Also, xsl:import is inefficient versus xsl:include when dealing with
large documents.

Referenced By:
XSLT

Evaluation Criteria:
1) Test: [BP1750.1]
Procedure:

Example:

<xsl:inmport href="Gui dance. xsl"/>

Page 562

Part 5: Developer Guidance

BP1752
Statement:

Place dynamic XML element data within an XML CDATA section.

Rationale:

The content of dynamic data can not be predicted and could contain the XML special reserved characters < and
& or the other characters that may cause parse errors; it is best to embed this data within an XML Character Data
(CDATA) section that is ignored by parsers.

The following is an example of the use of a CDATA section that contains source code. Since the code could
contain the < or & characters and be runtime dependent, a parse error could occur at runtime.
Please refer to the following example:

<! [CDATA[
Publ i c bool IessThan (a,b)
{ if (al=null & b!'=null a < b) then
{ return true;
Y}/ End if
el se
{ return fal se;
} /1 End else
} /1 End | essThan

11>

Referenced By:

XML Syntax

Evaluation Criteria:

1) Test: [BP1752.1]

Do Element Data sections that are dynamically generated or are provided by external data surround the Element Data
within a CDATA section?

Procedure:

Look for areas within XML instance documents or XML schemas that are candidates for dynamic content that can not
be expected to be under the control of the XML instance document generator.

Example:
The following is an example of the use of a CDATA block that contains source code. Since the code could contain the

< or & characters, a parse error could occur at runtime.
Please refer to the following example:

<! [CDATA[
Publ i c bool |essThan (a,b)
{ if (a<b) then
{ return 1;
Y} // End if
el se
{ return 0;
} /1 End else

Page 563

Part 5: Developer Guidance

} // End | essThan
11>

Page 564

Part 5: Developer Guidance

BP1757
Statement:

Do not ignore namespace prefixes in XPath expressions.

Rationale:

Ignoring namespaces can have undesired consequences. Some namespaces can contain nodes (elements) with
the same name that contain different data structures. Consequently, if names bypass the use of the associated
namespace, runtime errors can occur when attempts to process nodes of differing types occur.

Referenced By:

XPath
Evaluation Criteria:
1) Test: [BP1757.1]
Do any XPath statements ignore namespaces?

Procedure:

Check for the existence of XPaths similar to the following:

//*[local -nanme()="1ocation']

location is a node name defined in two different namespaces. For example, a geographic namespace may define
location as latitude and longitude. It may also be defined in the display namespace as a x and y pixel coordinate.

Example:

None.

Page 565

Part 5: Developer Guidance

BP1758
Statement:

Make names in descendant expressions unique within an XML document.
Rationale:

The descendant operator, when misused, can have unintended consequences since nodes of the same name
could possibly be included in multiple places in the XML Document. The XPath need to be written to eliminates
unwanted nodes of the same name from other parts of the document.

XML Instance Document

<libray>
<hooks >
“hook>
<titlexCel tic Enpirecftitle>
<author >Peter Berresford Ellis</author:>
<edition>1-<fedition:
<ISBN:0-89089-157—4< fLSBN:
< fbook>
< fbooks>
<staff>
“librarian
<title>Sciemce Specialist<ftitle:
<mame aJohn Q. Publicd name:

< f1ibvari ans
<fotaff>
< flibeary>
L d
XPath Expression
Results [f#title
Celtic Enpire |

1172

In the above example, the <title> element can occur in multiple places within the document. Using the descendent
operator '/I' with the title element name returns all the titles.

Referenced By:

XPath

Page 566

Part 5: Developer Guidance

BP1764
Statement:

Make all localizable user interface elements such as text and graphics externally configurable.

Rationale:

Externally configurable user interface elements allow for changing the supported language(s) at deploy-time or
run-time without recompilation.

Referenced By:

Designing User Interfaces for Internationalization
Evaluation Criteria:
1) Test: [BP1764.1]
Are all localizable presentation elements such as user interface text and graphics externally configurable?
Procedure:
Check for external configuration files for localizable presentation user interface elements.

Example:

Page 567

Part 5: Developer Guidance

BP1765
Statement:

Declare the encoding type for all user interface content.

Rationale:

Declaring the encoding type allows for an application to determine the encoding type programmatically and
make necessary display configuration settings at run-time. Also, for Unicode there are multiple ways to encode a
character set.

Referenced By:

Designing User Interfaces for Internationalization
Evaluation Criteria:

1) Test: [BP1765.1]

Do the user interface components (such as HTML pages) declare the encoding type?
Procedure:

Check to see that user interface components declare the encoding type.
Example:

Send the charset parameter in the Content-Type of HTTP header:

Content - Type: text/htm ; charset=utf-8

For XML (including XHTML), use the encoding pseudo-attribute in the XML declaration at the start of a document:

For HTML or XHTML served as HTML, use the tag inside :

Page 568

Part 5: Developer Guidance

BP1766
Statement:

Develop user interfaces to accommodate variable syntactic structure for messages.

Rationale:

Different languages form sentence structures in different ways. Composing messages in code from multiple
substrings in order to display the messages to the user may cause problems when porting the code to a language
that uses a different sentence structure.

Referenced By:

Designing User Interfaces for Internationalization
Evaluation Criteria:
1) Test: [BP1766.1]
Are messages displayed on the user interface constructed in code using multiple substrings?
Procedure:
Check code for messages displayed to the user to see if the messages are composed from multiple substrings.

Example:

Page 569

Part 5: Developer Guidance

BP1767
Statement:

Follow a standard process for human systems integration engineering such as the one defined by the International
Organization for Standardization in ISO 13407:1999 on human-centered design processes for interactive systems.

Rationale:

Using a standard well-defined process increased the chance that required steps and procedures are completed
during system development and lead to better usability.

Referenced By:

Human-Computer Interaction
Evaluation Criteria:
1) Test: [BP1767.1]
Was a process for human systems integration followed during system development?
Procedure:
Look for documentation stating the human systems integration process.

Example:

Page 570

Part 5: Developer Guidance

BP1768
Statement:

Use design patterns for application navigation.

Rationale:

Using common design patterns for application navigation builds on lessons learned, increases probability of user
understand of the navigation pattern, and may result in better performance and a reduction in training.

Referenced By:
Human Factor Considerations for Web-Based User Interfaces
Evaluation Criteria:

1) Test: [BP1768.1]

Does the application navigation follow design patterns?

Procedure:

Identify the design patterns used for application navigation.

Example:

. Use a hub navigation pattern for tasks that consist of multiple independent steps performed in any order

. Use wizard navigation pattern for tasks that consist of multiple interdependent steps that are defined in a
predefined order.

. Use a pyramid navigation pattern when it is necessary to navigate to sibling, child, or parent pages while
completing tasks.

Page 571

Part 5: Developer Guidance

BP1769
Statement:

Provide wrapper or adapter classes to isolate XML parser implementations.

Rationale:

Referenced By:

Parsing XML

Page 572

Part 5: Developer Guidance

BP1780
Statement:

Only overload arithmetic operators for objects that are arithmetic in nature.

Rationale:

In languages such as C++, it is possible to extend the intrinsic syntactical structure by defining overloaded
operators. Operators that are naturally considered mathematical in nature (i.e., add, subtract, nul ti ply,

di vi de, etc.) should behave as expected. For example, if the addition operator + is defined, it should represent
the mathematical addition operation.

Referenced By:

C++ Operator Overloading
Evaluation Criteria:

1) Test: [BP1780.1]
Do overloaded mathematical operators perform any mathematical operations?
Procedure:

Review any mathematical operators that have been defined for any classes and ensure that they are mathematical in
nature.

Example:

The following is an example of an addition operator:

cl ass | magi nary
{ doubl e val ue_;
bool imaginary_;
| magi nary
(doubl e val ue,
bool i magi nary
)
{ value_ = val ue;
i magi nary_ = i magi nary;
} // End | rmagi nary constructor
| magi nary operator +

(I'maginary | eftSi deC Operator)

Page 573

Part 5: Developer Guidance
{ ... I/ do what needs to be done

} // End operator+

} // End | maginary class

Page 574

Part 5: Developer Guidance

BP1781
Statement:

Allocate and de-allocate all module objects within the module that contains the objects.
Rationale:

Sutter and Alexandrescu define a module as any cohesive unit of release maintained by a single person or team
that is typically compiled with the same compiler, compiler version and compiler switches.

Because the memory allocation and de-allocation can change between these compiler instances, memory leaks
and memory corruption can occur. Anytime memory allocation and de-allocation conflicts occur, there is a potential
security issue.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 60.

Referenced By:

C++ Namespaces and Modules

Page 575

Part 5: Developer Guidance

BP1782
Statement:

Do not propagate exceptions across module boundaries.

Rationale:

Because the underlying definition of exceptions can vary between instances of a compiler, the resulting executable
code could also vary resulting in not being able to properly communicate the exception.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 62.

Referenced By:

C++ Namespaces and Modules

Page 576

Part 5: Developer Guidance

BP1783
Statement:

Use portable types in a module's interface.

Rationale:

Because the types define the data that flows between modules and each compiler instance can vary these
definitions, the types that define this data needs to be uniform in order to ensure proper data transfer.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 63.

Referenced By:

C++ Namespaces and Modules

Page 577

Part 5: Developer Guidance

BP1811
Statement:

Isolate all use of vendor specific extensions to the Data Distribution Service (DDS).

Rationale:

Vendor specific extensions may be required to perform certain configuration actions, take advantage of features
that are in the process of becoming standard (e.g., version 1.3, expected to be adopted by late 2007), or simply
use additional capabilities provided by a vendor that would otherwise require significant application work.

Vendor-specific extensions should only be used if there is no standard API from the DDS specification that
accomplishes the same function.

One method of isolating vendor-specific extensions is to enclose the code within conditional compile instructions
(e.g., #i f def #endi f for C/C++) such that portability is not compromised.

Referenced By:

Decoupling Using DDS and Publish-Subscribe
Evaluation Criteria:

1) Test: [BP1811.2]

Does the implementation use wrappers or fagade patterns to isolate vendor specific code?
Procedure:

Is vendor specific code contained within a limited number of classes or objects?
Example:

None
2) Test: [BP1811.1]

Does the implementation annotate vendor specific code?
Procedure:

Look for the use of compiler instructions that isolate vendor specific code.
Example:

#i f def DDS_VENDOR XXXX
#. <vendor specific code
#endi f

Page 578

Part 5: Developer Guidance

BP1812

Statement:

Use the RELI ABI LI TY Quality of Service (QoS) kind BEST_EFFORT for Data Distribution Service (DDS)
Topics that are written frequently where missing an update is not important because new updates occur soon
thereafter.

Rationale:

The use of the RELI ABI LI TY QoS kind BEST_EFFORT allows the middleware to use a lower-latency, lighter-
weight protocol to send data that avoids the need for extraneous Acknowledgement and Heartbeat traffic. This
protocol also exploit multicast more efficiently because there is never a need to send any acknowledgments back
to the sender. Consequently, this protocol should be preferentially used whenever the nature of the Topic is such
that occasionally missing a message has no adverse consequence to the system.

Data that is continually published and represents updates to data-objects or where only the most current value is
of interest to the system are prime candidates for BEST _EFFORT communication.

Referenced By:

DDS Quality of Service

Evaluation Criteria:

1) Test: [BP1812.1]

Is the RELI ABI LI TY QoS selection properly justified for each Topic? Is BEST _EFFORT kind used whenever the
nature of the Topic allows it?

Procedure:

Review the system documentation for proper justification of the RELI ABI LI TY QoS assigned to each Topic.
Example:

None

Page 579

Part 5: Developer Guidance

BP1813

Statement:

Use the RELI ABI LI TY Quality of Service (QoS) kind RELI ABLE for Data Distribution Service (DDS) Topics
written sporadically or where it is important that the current data in the Topic is received reliably.

Rationale:

The RELI ABI LI TY QoS kind RELI ABLE ensures the service will make all necessary attempts to deliver the
information. The DDS protocol employs Heartbeats and Acknowledgments to accomplish this task.

Data that is rarely written or which the system requires never to be lost should be published with RELI ABI LI TY
QoS kind RELI ABLE.

Referenced By:
DDS Quality of Service
Evaluation Criteria:

1) Test: [BP1813.1]

Is the RELI ABI LI TY QoS selection properly justified for each Topic? Is RELI ABLE kind used whenever the nature of
the Topic requires it?
Procedure:

Review the system documentation for proper justification of the RELI ABI LI TY QoS assigned to each Topic.
Example:

None

Page 580

Part 5: Developer Guidance

BP1814

Statement:

Use the DEADLI NE Quality of Service (QoS) to for Data Distribution Service (DDS) DataWriters for which data
is published at a constant rate.

Rationale:

The frequency with which a particular data-object is updated may affect the logic of the overall system. For
example some radar processing algorithms may have been written under the assumption that each track is
updated every five seconds after the radar completes a new sweep.

If the Dat aW i t er specifies a DEADLI NE QoS, DDS can monitor that each data-object is indeed written at least
once per stated period. Furthermore, DDS can propagate the Dat aW i t er deadline to the DataReaders such
that they can realize whether their expectation matches what the Dat aW i t er provides. If the expectation cannot
be met the application is notified of an incompatible QoS.

By using this QoS the modules can remain de-coupled, yet provide the essential information required for the
integrated system to operate as expected.

Referenced By:
DDS Quality of Service
Evaluation Criteria:

1) Test: [BP1814.1]

Is the DEADLI NE QoS used in all the Dat aW'i t er s where it could?
Procedure:

Review the system documentation for proper justification of the DEADLI NE QoS assigned to each Dat aWi t er.
Example:

Page 581

Part 5: Developer Guidance

BP1815
Statement:

Use the DEADLI NE Quality of Service (QoS) for Data Distribution Service (DDS) DataReaders that expect data
to be sent to them at a constant rate.

Rationale:

The frequency with which a particular data-object is updated may affect the logic of the overall system. For
example some radar processing algorithms may have been written under the assumption that each track is
updated every five seconds after the radar completes a new sweep.

If the Dat aReader specifies a DEADLI NE QoS then DDS can monitor that an update to each data-object is indeed
received at least once per stated period and if not notify the application. Furthermore, DDS can propagate the

Dat aReader deadline to the DataWriters such that they can realize whether they can meet the expectation of the
Dat aReader . If the expectation cannot be met the application is notified of an incompatible QoS.

By using this QoS the modules can remain decoupled, yet provide the essential information required for the
integrated system to operate as expected.

Referenced By:
DDS Quality of Service
Evaluation Criteria:

1) Test: [BP1815.1]

Is the DEADLI NE QoS used in all the Dat aReader s where it could?
Procedure:

Review the system documentation for proper justification of the DEADLI NE QoS assigned to each Dat aReader .
Example:

Page 582

Part 5: Developer Guidance

BP1816

Statement:

Use the LI VELI NESS Quality of Service (QoS) for Data Distribution Service (DDS) Topics where data is not
sent sporadically; that is, it is sent with no fixed period.

Rationale:

Some data (e.g., alarms or commands) are sent without a fixed period. In these cases the fact that updates are not
received could indicate that there is either no new data, or alternatively that there is a system malfunction and the
writer is not able to send the data. The DDS LI VELI NESS QoS allows the application to discern between these
two situations.

Setting the LI VELI NES QoS indicates to DDS that in the event that there is no data to send, periodic liveliness
messages should be exchanged to notify the DataReader that the DataWriter is still active, capable of
communication, and therefore that if it receives no data then it is in fact because there is none to send. The DDS
monitors the LI VELI NESS and informs the application when a Dat aW i t er loses its liveliness via the proper
status message dispatched to the Listener.

Proper settings of the LI VELI NESS QoS is also required to receive proper | nst anceSt at e information with the
received Samples as well as to manage OANERSHI P in the presence of failures.

Referenced By:

DDS Quality of Service
Evaluation Criteria:

1) Test: [BP1816.1]

Are all Dat aW i t er s or Dat aReader s that do not set a DEADL| NE setting a LI VELI NESS?
Procedure:

Check the QoS used to create Dat aReader s and Dat aW i t er s and ensure that if the DEADLI NE QoS is not set,
then the LI VELI NESS QoS is set to a non-infinite value

Example:

Page 583

Part 5: Developer Guidance

BP1817

Statement:

Page 584

Part 5: Developer Guidance

BP1818

Statement:

Use the HI STORY Quality of Service (QoS) kind KEEP_LAST for Data Distribution Service (DDS) Topics that
represent system state, in that new data-values replace the old values for each Keyed data-object.

Rationale:

Some Topics represent system state. The readers of the Topic need only know the most current value (or last set
of N values) of each data-object published under the Topic. An example of this may be a Topic representing the
reading of different temperature sensors. Applications only care to read the most recent value of each sensor. The
same may be said of a Topic representing the expected arrival times of aircraft at a given airport.

The HI STORY QoS setting of KEEP_LAST indicates to the middleware that it should not attempt to store or
propagate old values of data objects; instead, only the most recent value(s) are of interest. This allows DDS to
conserve system resources (memory) as well as to save the bandwidth required to send information that is no
longer relevant. Reader applications also benefit as they do not waste time reacting to data values that are no
longer current.

Referenced By:
DDS Quality of Service
Evaluation Criteria:

1) Test: [BP1818.1]

Is the Hl STORY QoS properly sent on all Topics?
Procedure:

Check the QoS used to create DataReaders and DataWriters and check how the H STORY QoS is set. Ensure that a

kind KEEP_LAST is used whenever the Topic represents system state.
Example:

Page 585

Part 5: Developer Guidance

BP1819

Statement:

Use the HI STORY Quality of Service (QoS) kind KEEP_ALL for Data Distribution Service (DDS) Topics that
represent events or commands where all values written should be delivered to the readers (i.e., new values do not
replace old values).

Rationale:

Some Topics represent events, commands, or messages in that new data written never replaces previously-written
values, rather they should all be delivered to the DataReader.

The HI STORY QoS setting of KEEP_ALL indicates to the middleware that it should not replace old values with new
values on the topic. Subject to other QoS (such as filters, ownership, lifespan) they should all be delivered to the
Dat aReader s.

Referenced By:
DDS Quality of Service
Evaluation Criteria:

1) Test: [BP1819.1]

Is the Hl STORY QoS properly sent on all Topics?
Procedure:

Check the QoS used to create Dat aReader s and DataWriters and check how the Hl STORY QoS is set. Ensure that

a kind KEEP_ALL is used whenever the Topic represents 'events', commands or messages.
Example:

Page 586

Part 5: Developer Guidance

BP1820

Statement:

Use Tl ME_BASED FI LTER Quality of Service (QoS) to protect DataReadersthat cannot handle all the traffic that
could be written by the writers on that Data Distribution Service (DDS)Topic and just need periodic updates on
the most current data-values.

Rationale:

The TI ME_BASED FI LTER QoS allows a Dat aReader to specify that it is interested only in (potentially)

a subset of the values of the data. The filter states that the Dat aReader does not want to receive more
than one value each minimum_separation, regardless of how fast the changes occur. The default setting is
minimum_separation=0 indicating that the Dat aReader is potentially interested in all values.

In heterogeneous systems, it is common that some subsystems either cannot handle or do not choose to handle
all the information available on a Topic. For example a high-level display at an airport control tower may not need
to update the location of aircraft more often than each second as the human operators looking at the display would
not be able to take advantage of faster refreshes. Nevertheless, the data is published at much higher rate to allow
for algorithmic processing on other subsystems.

By setting the TI ME_BASED FI LTER properly an application that has a well defined maximum refresh rate can
protect itself from system reconfigurations which may result in a Topic being published faster than originally
anticipated.

Referenced By:

DDS Quality of Service
Evaluation Criteria:

1) Test: [BP1820.1]

Is the TI ME_BASED FI LTER QoS properly sent on all Dat aReader s?
Procedure:

Check the QoS used to create Dat aReader s and check whether the TI ME_BASED FI LTER QoS is set. Ensure it is
set to a proper non-zero minimum_separation whenever the application can be in a system where it is hot expected to
handle all the updates on the Topic.

Example:

Page 587

Part 5: Developer Guidance

BP1821

Statement:

Use the Data Distribution Service (DDS) LI FESPAN Quality of Service (QoS) to indicate that data is only valid
for a finite time period and stale data is discarded after a certain expiration time elapses.

Rationale:

Some Topics represent data with a natural expiration. For example the location of an aircraft during flight becomes
less relevant as the information ages and may not have any tactical value after a certain time elapses.

The setting of the LI FESPAN QoS indicates to DDS the maximum time duration during which the information
is relevant. After this time elapses, DDS is no longer required to maintain the information or provide it to

the DataReaders. Proper setting of this QoS can therefore save resources and bandwidth as well as save
Dat aReader s from being notified of information that is no longer relevant.

Referenced By:
DDS Quality of Service
Evaluation Criteria:

1) Test: [BP1821.1]

Is the LI FESPAN QoS properly sent on all Topics?
Procedure:

Check the QoS used to create DataWriters and check whether the LI FESPAN QoS is set. Ensure it is set to a proper
non-infinite duration whenever appropriate.

Example:

Page 588

Part 5: Developer Guidance

BP1822
Statement:

Use the PARTI TI ON Quality of Service (QoS) to limit the scope of the data written/read on a Data Distribution
Service (DDS) Topic to only the writer/readers that have a common patrtition.

Rationale:

The PARTI TI ON QoS is used to introduce logical partitions within a Topic. A DataWriter only communicates with a
DataReader if (in addition to matching the Topic and having compatible QoS) they share a common partition

The PARTI TI ON QoS is set on the Publisher and Subscriber and affects all the Dat aW i t er s in the Publisher
and Dat aReader s on the Subscriber.

The PARTI TI ON QoS can be used to introduce a logical scope and the fact that it is adjustable at run-time makes
it possible to perform system reconfigurations. For example, a Dat aReader could be temporarily isolated from

the rest of the system by switching its Partition to something that nobody matches. Similarly a Dat aw i t er and
Dat aReader could be reconfigured to have an "isolated session" by switching to a partition that nobody else uses.

Referenced By:

DDS Quality of Service

Evaluation Criteria:

1) Test: [BP1822.1]

Is the PARTI TI ON QoS used to simplify application logic where appropriates?
Procedure:

Check the QoS used to create Publisher and Subscriber and check whether the PARTI TI ON QoS is used. Verify that
the application does not use some other non-standard way to implement a use-case that could be supported using the
PARTI TI ON QoS.

Example:

Page 589

Part 5: Developer Guidance

BP1823

Statement:

Use the Data Distribution Service (DDS) RESOURCES LI M TS Quality of Service (QoS) in platforms with
limited memory or in real-time systems to properly configure the resources that will be utilized and avoid
exhaustion of system resources at run-time.

Rationale:

The RESOURCE_LI M TS QoS on the DataWriter and DataReader specifies the resources that DDS can consume
in order to meet the requested QoS.

While these limits can be left to their default "auto-grow" settings proper configuration of these limits is important
in any system that has limited resources and is expected to operate reliably for long time spans. By setting the
limits the developer can balance the resources consumed for each topic and protect the system against a mis-
configuration when a Topic that produces too much data exhausts the resources needed to manage other Topics.
This is especially important if other QoS do not limit the amount of data that the system would need to store (e.g. if
HI STORY is set to KEEP_ALL and LI FESPAN is set to infinite).

Referenced By:

DDS Quality of Service

Evaluation Criteria:

1) Test: [BP1823.1]

Is the RESOURCE_LI M TS QoS set on the Dat aWi t er and Dat aReader ?
Procedure:

Check the QoS used to create Dat aW i t er s and Dat aReader s and check whether the RESOURCE_LI M TS are set
to some finite limits. Ensure that any Dat aW i t er s and Dat aReader s that have if H STORY kind KEEP_ALL and
LI FESPAN duration set to infinite use the RESOURCE_LI M TS to control the maximum resource utilization.

Example:

Page 590

Part 5: Developer Guidance

BP1824

Statement:

Use the USER _DATA Quality of Service (QoS) to communicate metadata on the DomainParticipant that may be
used to authenticate the application trying to join the Data Distribution Service (DDS) Domain.

Rationale:

In many cases the application needs to send additional information that describes the Domai nParti ci pant to
other participants in the DDS Domain. This information can be used to authenticate the participant or to meet any
other application-specific need.

The USER _DATA QoS on the Donmai nPar ti ci pant allows the application to store un-interpreted bytes that will be
propagated via the DDS built-in discovery mechanism and will be accessible to the other Domai nParti ci pant s
on the system.

Referenced By:

DDS Quality of Service

Evaluation Criteria:

1) Test: [BP1824.1]
Is the USER_DATA QoS set on the Donai nPar ti ci pant ?
Procedure:

Check the creation of the Domai nPar t i ci pant and determine whether the USER_DATA QoS is used. Ensure that
the application does not use another non-standard way to accomplish the same function.

Example:

None.

Page 591

Part 5: Developer Guidance

BP1825
Statement:

Use thei gnore_parti ci pant operation on the DomainParticipant to deny access to another
DomainParticipant trying to join a Data Distribution Service (DDS) Domain.

Rationale:

The i gnore_parti ci pant operation can be used by a Dormai nParti ci pant to prevent another
Domai nParti ci pant from communicating with the first participant. In combination with the USER_DATA QoS on
the participant this mechanism can be used to authenticate Domai nParti ci pant s.

Referenced By:

Decoupling Using DDS and Publish-Subscribe
Evaluation Criteria:

1) Test: [BP1825.1]

Isthe i gnore_parti ci pant operation used whenever there is a requirement to prevent arbitrary participants from
accessing the information the first participant publishes or subscribes?

Procedure:
Check the code for any occurrences of the i gnor e_parti ci pant operation.

Ensure that the application does not use another non-standard way to accomplish the same function.
Example:

Page 592

Part 5: Developer Guidance

BP1826
Statement:

Use the USER _DATA Quality of Service (QoS) on the DataWriters and DataReaders to communicate metadata
that may provide application-specific information of the entity writing/reading data in a Data Distribution Service
(DDS) Domain.

Rationale:

In many cases the application needs to send additional information that describes the Dat aW i t er or the
DataReader to other entities in the DDS Domain. This information can be used to authenticate the Dat aWi t er/
Reader or to meet any other application-specific need.

The USER DATA QoS on the Dat aW i t er and the Dat aReader allows the application to store un-interpreted
bytes that will be propagated via DDS's built-in discovery mechanism and will be accessible to the other
Dat aW it er s and Dat aReader s on the system.

Referenced By:

DDS Quality of Service

Evaluation Criteria:

1) Test: [BP1826.1]
Is the USER _DATA QoS set on the Dat aW i t er and Dat aReader ?
Procedure:

Check the creation of the Dat aW i t er and Dat aReader and determine whether the USER_DATA QoS is used.
Ensure that the application does not use another non-standard way to accomplish the same function.

Example:

None.

Page 593

Part 5: Developer Guidance

BP1827

Statement:

Use the i gnore_publicati onandi gnore_subscri pti on onthe DomainParticipant to deny access to a
Data Distribution Service (DDS) Topic by a specific DataWriter or DataReader.

Rationale:

The ignore_publication and ignore_subscription operation can be used by a Donai nParti ci pant to prevent
aDat aWit er or Dat aReader from communicating with the entities in the participant. In combination with
the USER_DATA QoS on the Dat aW i t er and Dat aReader this mechanism can be used to check that the
Dat aW it er and Dat aReader have the proper access control to the Topic.

Referenced By:

Decoupling Using DDS and Publish-Subscribe
Evaluation Criteria:

1) Test: [BP1827.1]

Are the i gnore_publ i cati on andignore_subscri pti on operation used whenever there is a requirement to
prevent arbitrary Dat aW i t er s or Dat aReader s from accessing the information on a Topic?

Procedure:

Check the code for any occurrences of the i gnor e_publ i cati on andi gnore_subscri pti on operation.
Ensure that the application does not use another non-standard way to accomplish the same function.

Example:

Page 594

Part 5: Developer Guidance

BP1828
Statement:

Use the Data Distribution Service (DDS) OANERSHI P Quality of Service (QoS) kind set to SHARED when each
unique data-object within a DDS Topic to which multiple DataWriters can write.

Rationale:

A primary intent of DDS is to support a loosely coupled publish and subscribe paradigm where the publishing is
isolated from subscribing through autonomous topics. As a result, an implementation that requires a single data
publisher currently may evolve to require multiple data publishers in the future. By using a OAMNERSHI P QoS kind
set to SHARED and allowing the DDS infrastructure to connect the publisher and the subscriber together, the
implementation may be extended to another DDS profile without having to modify the original source code.

Referenced By:

DDS Quality of Service

Page 595

Part 5: Developer Guidance

BP1829

Statement:

Use the Data Distribution Service (DDS) OMNERSHI P Quality of Service (QoS) kind set to EXCLUSI VE when
multiple DataWriters cannot write each unique data-object within a DDS Topic simultaneously.

Rationale:

DDS easily supports multiple publishers adding data to the same topic without impacting the subscribers. Using
the DDS ONNERSHI P QoS kind set to EXCLUSI VE places the entire burden off supporting the multiple publishers
on the DDS implementation rather than the publisher or subscriber code. This results in an increase of modularity,
portability and the maintainability.

Referenced By:

Design Tenet: Layering and Modularity
DDS Quality of Service

Page 596

Part 5: Developer Guidance

BP1830
Statement:

Use the Data Distribution Service (DDS) Content Profile to tailor subscription message data.
Rationale:

The DDS Content Profile allows for the subscribers to select and refine the data that is retrieved from a Topic.
This tailoring code is part of the DDS infrastructure and is well tested and reliable. Not using the DDS Content
Profile and using code within the subscriber increases the complexity of the subscriber and causes tight coupling
between the subscriber code and the Topic.

Referenced By:

Design Tenet: Network Connectivity
Decoupling Using DDS and Publish-Subscribe

Page 597

Part 5: Developer Guidance

BP1831
Statement:

Use the Data Distribution Service (DDS) Persistence Profile to ensure durable data delivery.
Rationale:

The DDS Persistence Profile allows for data persistence within a Topic independent of hardware platform and
operating system (OS) and to retrieve the data using the standard Structured Query Language (SQL). As a
result, the publisher, subscriber and the topic remain loosely coupled from each other as well as the hardware
platform or the OS.

Referenced By:

Decoupling Using DDS and Publish-Subscribe

Page 598

Part 5: Developer Guidance

BP1832
Statement:

Handle all Data Distribution Service (DDS) Data Local Reconstruction Layer (DLRL) Exceptions.
Rationale:

The DLRL API may raise Exceptions under certain conditions. The following is an extensive list of all possible
Exceptions and the conditions in which they will be raised:

DCPSEY r or If an unexpected error occurred in the DCPS

BadHoneDefinition If a registered Obj ect Hone has dependencies
to other, unregistered Obj ect Hones.

Not Found If a reference is encountered to an object that
has not (yet) been received by the DCPS.

Al readyExi sting If a new object is created using an identify that is
already in use by another object.

Al r eadyDel et ed If an operation is invoked on an object that has
already been deleted

Precondi t i onNot Met If a precondition for this operation has not (yet)
been met.

NoSuchEl enent If an attempt is made to retrieve a non-existing

element from a Collection.

SQLError If an SQL expression has bad syntax,
addresses non-existing fields or is not consistent
with its parameters.

Note: DLRL, a recent addition to the DDS specification is particularly rich; implementations using this upper
level profile of the specification are still emerging.

Referenced By:

DDS Data Local Reconstruction Layer (DLRL)

Page 599

Part 5: Developer Guidance

BP1833
Statement:

Use the Data Distribution Service (DDS) Object Model Profile for accessing message data as objects.
Rationale:

The DDS Data Local Reconstruction Layer (DLRL) is intended to provide an abstraction layer between the
actual underlying data and the higher level object level concepts used in applications. The Object Model Profile
defines how applications interact with the abstract object layer. Applications that are bound directly to the actual
underlying data are tightly coupled to the layer and are subject to its evolutionary changes.

Note: DLRL, a recent addition to the DDS specification is particularly rich; implementations using this upper
level profile of the specification are still emerging.

Referenced By:

DDS Data Local Reconstruction Layer (DLRL)

Page 600

Part 5: Developer Guidance

BP1863
Statement:

Make shareable data assets visible, even if they are not accessible.

Rationale:

Making data visible using a consistent, standardized metadata specification within a Net-Centric Environment
(NCE) facilitates a federated cross-organizational discovery capability [R1172]. A common specification for the
description of information allows for a comprehensive capability that can locate all information across the NCE
regardless of format, type, location, or classification, dependent on user authorization. The DoD Metadata
Specification (DDMS) was developed to support Enterprise-wide data discovery by providing a common set

of descriptive metadata elements. Discovery metadata must conform to the DDMS in accordance with DoD
Directive (DoDD) 8320.2 [rR1217]. Information owners tag information with DDMS-compliant metadata to ensure
discoverability of information in the NCE.

The extensible nature of the DDMS supports domain-specific or COIl discovery metadata requirements and
extends the element categories identified in the DDMS Core Layer used to describe information. Use of the DDMS
does not preclude use of other metadata processes or standards. For example, record-level database tagging and
in-line document tagging are common practices to support various department objectives. These tagging initiatives
should be enhanced to include the DDMS for enterprise discovery.

Referenced By:

Design Tenet: IPv6

Net-Centric Data Strategy (NCDS)

Design Tenet: Make Data Visible

Design Tenet: Open Architecture

Design Tenet: Service-Oriented Architecture (SOA)

Evaluation Criteria:

1) Test: [BP1863.1]

Does the system provide discovery metadata in accordance with the DoD Discovery Metadata Standard (DDMS) for
all data posted to shared spaces?

Procedure:
Examine the DoD Metadata Registry for program/system.
Example:

Discoverable information has associated DDMS metadata that can be found in the DDMS).

Page 601

Part 5: Developer Guidance

BP1864
Statement:

Layer architectures to support clear boundaries between data management, presentation, and business logic
functionality.

Rationale:

Multitier, or n-tier, architectures are types of client/server architectures that enable an application to be accessed
and executed by one or more software agents or services on the network. An N-tier architecture should be
composed of layers; graphical user interface (GUI), business logic, and data should enable developing and
maintaining each tier separately as technologies change. Separation of each tier may be logical or physical.
Regardless of the physical system design, the structure should include well-defined boundaries between the
different tiers so that changes in the system are transparent to users.

For example, N-tier architectures may employ Web services as a means of separating the presentation layer from
business logic and data layers. The presentation layer serves static content through Web pages. A business logic
layer provides dynamic content using a J2EE application server. Finally, a database provides the underlying
information that must be shared.

Referenced By:

Design Tenet: Packet Switched Infrastructure
Design Tenet: Scalability

Design Tenet: Open Architecture

Design Tenet: Transport Goal

Design Tenet: Accommodate Heterogeneity

Evaluation Criteria:
1) Test: [BP1864.1]
Does the architecture support clear boundaries between data, presentation, and business logic layers?
Procedure:
Examine the architecture for clear boundaries between data, presentation, and business logic layers.
Example:

The architecture uses Web Services to share information between the presentation and business logic layers.

Page 602

Part 5: Developer Guidance

BP1865
Statement:

Provide sufficient program, project, or initiative metadata descriptions and automated support to enable mediation
and translation of the data between interfaces.

Rationale:

Information exchanges should support known and unanticipated users. The program or project should initiate
sufficient metadata descriptions and provide automated support to enable mediation and translation of data
between interfaces. All of the data that can and should be shared externally beyond the programmatic bounds
of your program should be defined well enough in metadata descriptions and translation of the data between
interfaces should be automated.

Referenced By:

Content Discovery Services

Net-Centric Data Strategy (NCDS)

Design Tenet: Provide Data Management
Design Tenet: Make Data Visible

Net-Centric Information Engineering
Metadata

Coordination of Node and Enterprise Services
Design Tenet: Make Data Interoperable

Evaluation Criteria:

1) Test: [BP1865.1]

Evaluation of interfaces and applicable mediation/translations to access that the program, project, or initiative has
sufficient metadata descriptions and automated support to enable mediation and translation of the data between

interfaces. Data is XML wrapped for exchange and configured to support standard transactions with headers, trailers
and bodies.

Procedure:

Evaluate the degree to which data is XML wrapped for exchange and configured to support standard transactions with

headers, trailers and bodies.

Evaluation of the DoD Metadata Registry entries to assess sufficient metadata descriptions and automated support
the enables mediation and translation of the data between interfaces.

Example:

XML wrapped data are intend for exchange, that is configured in terms of standard transactions with headers, trailers
and bodies.

Page 603

Part 5: Developer Guidance

BP1866
Statement:

Coordinate with end users to develop interoperable materiel in support of high-value mission capability.

Rationale:

System providers acquire the materiel portion of mission capabilities that include all aspects of DOTMLP-F.

An assessment by the community regarding the value of information or services provides useful direction in
support of managing a mission area's portfolio of services. User feedback mechanisms provide a means of
capturing and reporting user satisfaction and give portfolio managers decision-making information to steer
investments, developments, and improvements. As service consumers gain access to information more quickly in
the operational environment, command structures will inevitably change the manner in which IT investments are
made. Service and information providers in a mission area should work together to define the processes for using
the user feedback for service and information improvements because these processes are specific to a portfolio of
capabilities in the Enterprise.

Referenced By:

Design Tenet: Make Data Interoperable
Net-Centric Information Engineering
Design Tenet: Joint Net-Centric Capabilities

Evaluation Criteria:

1) Test: [BP1866.1]

Processes exist that allow a consumer to

1. request changes in the format (syntax or semantic) of the visible data asset;
2. report a problem with a data asset;

3. request additional data from the data provider

Procedure:

Evaluation of the process a consumer would follow to

1. request changes in the format (syntax or semantic) of the visible data asset;
2. report a problem with a data asset;

3. request additional data from the data provider.

Example:

An end-to-end output management strategy, across multiple business sites and/or the enterprise.

A distributed and extensible database which make information accessible to authorized users across the enterprise.

Page 604

Part 5: Developer Guidance

BP1868
Statement:

Incorporate mechanisms to enhance the survivability, resiliency, redundancy, and reliability of Computing
Infrastructure (Cl).

Rationale:

Computing Infrastructure (Cl) must be survivable, resilient, redundant, and reliable in the presence of attacks,
failures, accidents, and natural or man-made disasters. A robust ClI must incorporate survivability, resiliency,
redundancy, and reliability to ensure operational availability in support of information sharing in DoD, as well as
externally with federal agencies, state and local governments, allies, and coalition partners. In the context of the
Cl, the measure of reliability is included as a critical element in ensuring high mean time between failures (MTBF).

Survivable: Survivability ensures that Cl systems, subsystems, equipment, processes, procedures, or Cl-related
doctrine, organization, training, materiel, leadership, personnel, facilities (DOTMLPF) continue to fulfill critical
mission requirements in the presence of attacks, failures, accidents, and natural or man-made disasters.

Resilient: Incorporation of resiliency into Cl ensures the ability to automatically recover from, or adjust to, attacks,
failures, or accidents. Fault tolerance is a key example of resilience that measures the ability to respond gracefully
to an unexpected CI system, subsystem, process, or procedure failure.

Redundant: Incorporation of automatic redundancy into the Cl ensures that alternative devices are available to
perform the required system functionality if a primary device fails. Redundancy also ensures that system data
remains accessible and corruption free when Cl components fail.

Reliable: Reliable OS platforms, other software infrastructure, and hardware components are critical to

ensuring that operators can depend on their ability to support system functions and applications. Bandwidth
conservation mechanisms minimize latency and jitter, as well as the instability that comes from running processors
and networks with high loads. Processing efficiency mechanisms, such as efficient software implementation
techniques, allow applications to meet performance and latency requirements. Typically, reliability is measured

in mean time between user failures (MTBUF). MTBF of Cl components is one factor affecting the overall system
MTBF.

A Continuity of Operations Plan (COOP) and disaster recovery planning are also key to ensuring a robust CI.
The DoD Dictionary of Military Terms defines COOP as "the degree or state of being continuous in the conduct of
functions, tasks, or duties necessary to accomplish a military action or mission in carrying out the national military
strategy." It includes the functions and duties of the commander, as well as the supporting functions and duties
performed by the staff and others acting under the authority and direction of the commander.

Referenced By:

Design Tenet: Availability
Design Tenet: Enterprise Service Management

Evaluation Criteria:
1) Test: [BP1868.1]
Does the program or initiative have a Continuity of Operations Plan (COOP) plan?
Procedure:

Verify existence of COOP.

Page 605

Part 5: Developer Guidance
Example:

Continuity of Operations Plans and Disaster Recovery Plans that include preparatory measures, response actions,
and restoration activities planned or taken to ensure continuation of critical functions to maintain effectiveness,
readiness, and survivability.

Technologies that allow, self-correcting mechanisms to be implemented (e.g., automatic recovery without manual
intervention).

Clustering of servers, incorporation of relative addressing schemata (e.g., DNS), site mirroring, and provisioning of
geographically distributed CI functionality are examples of fail-over implementations.

Page 606

Part 5: Developer Guidance

BP1876
Statement:

Provide a priority-based differentiated management of quality-of-service for traffic based on class of user,
application, or mission.

Rationale:

The GIG and its components must support both QoS and CoS in accordance with the DoD QoS/CoS Roadmap
and policies. The primary QoS factors that affect end-user experience include availability, throughput, delay/
latency, jitter (variation in delay with time), and bit/packet loss. In addition, all GIG networks should be designed
with the ability to support end-to-end treatment of multiple distinct classes of service prioritization levels. These
prioritization levels require that higher-precedence data flows will be transmitted through the networks with

their required QoS with greater assurance than are lower-precedence data flows. Prioritization must enforce
transmission of higher-precedence data in the network, at best, concurrently with or, at worst, to the detriment of
lower-precedence data flows. In the best case, sufficient resources exist to transmit data of different priorities with
their required quality. Otherwise, higher-priority data must be transmitted at the expense of lower-precedence data,
possibly degrading or even preempting the lower-priority data.This capability, referred to as Class of Service (CoS)
support, corresponds approximately to the notion of Multi-Level Priority and Preemption (MLPP).

Referenced By:

Design Tenet: Transport Goal

Design Tenet: Differentiated Management of Quality-of-Service
Design Tenet: Packet Switched Infrastructure

Design Tenet: Layering and Modularity

Evaluation Criteria:

1) Test: [BP1876.1]

Does the program, project, or initiative support a priority-based differentiated management QoS?

Procedure:

Describe the approach used to provide a priority-based differentiated management of quality-of-service.

Example:

Some applications in the GIG require firm service guarantees, while others operate correctly if they receive services
that are differentiated with respect to one or more performance characteristics.

Differentiated Services or DiffServ aggregates flows into coarse classes and then treats the packets in these classes
differentially. Due to this aggregation, and the resulting absence of a need to consider individual flows beyond the

edges of an internet, DiffServ exhibits good scaling properties. However, in the absence of additional mechanisms,
DiffServ provides only preferential, differentiated levels of service and not guarantees.

Page 607

Part 5: Developer Guidance

BP1880
Statement:

Justify, document, and obtain a waiver for all radio terminal acquisitions that are not JTRS/SCA compliant.

Rationale:

Tactical communications programs should focus on attaining the end objective of providing a family of software-
programmable radios that will greatly enhance warfighters' wireless communication capabilities, while decreasing
cost of ownership for infrastructure. The Joint Tactical Radio System (JTRS) will provide critical communications
capabilities for the tactical wireless tails of the GIG. JTRS and its software communications architecture (SCA)
continue to evolve and have become a cornerstone of the provision of future net-centric capabilities.

Referenced By:

Design Tenet: Joint Net-Centric Capabilities

Design Tenet: Concurrent Transport of Information Flows
Software Communication Architecture

Design Tenet: Employment of Wireless Technologies

Evaluation Criteria:
1) Test: [BP1880.1]
Are all of the program's, project's, or initiative's radio acquisitions JTRS/SCA compliant?
Procedure:
Describe all radio acquisitions that are not JTRS/SCA compliant.
Example:

None.

Page 608

Part 5: Developer Guidance

BP1881
Statement:

Separate code based on required privilege.

Rationale:

Separating code based on privilege allows for each function, process, or executable to run with a minimal set of
privileges.

Referenced By:

Apply Principle of Least Privilege

Page 609

Part 5: Developer Guidance
BP1888
Statement:

Only enable plaintext viewing in email clients on DoD-owned and DoD-operated information systems.

Rationale:

Due to the significant risk of malicious mobile code downloaded into user workstations via email, DoD Mobile
Code Palicy restricts all mobile code in email independent of risk category. Disabling the automatic execution of
mobile code in email is for both mobile code contained in the body of an email message and attachments. This will
prevent immediate automatic execution of HTML that may download and execute mobile code from remote sites
when the user clicks on a message to preview it. The user will be able to preview the message, optionally view the
page source of suspicious-looking messages, and subsequently decide whether to open the attachment (the user
will still be able to intentionally select the email attachment to execute HTML in that attachment.)

Referenced By:
Mobile Code
Evaluation Criteria:

1) Test: [BP1888.1]

Is automatic execution of all categories of mobile code in email disabled?
Procedure:

Verify that only plaintext email viewing is enabled.
Example:

Page 610

Part 5: Developer Guidance

BP1889
Statement:

Minimize execution at elevated privilege levels to the shortest time required.

Rationale:

Holding elevated permission for a minimum time reduces the chance that a security exploit can execute arbitrary
code and minimizes the impact when an exploit occurs.

Referenced By:

Apply Principle of Least Privilege

Page 611

Part 5: Developer Guidance

BP1890

Statement:

Compile code using the highest compiler warning level available.

Rationale:

Compiler warnings are often useful in detecting possible violations of syntax rules and mistakes introduced by
developers which may lead to run time errors.

Referenced By:
Heed Compiler Warnings
Evaluation Criteria:

1) Test: [BP1890.1]

Is code compiled using the highest compiler warning level available for the compiler?
Procedure:

Verify that the build script includes an applicable flag to enable the highest warning level for the compiler.
Example:

Java compilers version 5 and higher support a - Xl i nt compile option.

Page 612

Part 5: Developer Guidance

BP1891
Statement:

Develop code such that it compiles without compiler warnings.

Rationale:

Compiler warnings are often useful in detecting possible violations of syntax rules and mistakes introduced by
developers which may lead to run time errors.

Referenced By:

Heed Compiler Warnings

Page 613

Part 5: Developer Guidance
BP1892

Statement:

Explicitly document exceptions for valid code that produces compiler warnings.

Rationale:

It is important to document exceptions when valid code produces a compiler warning as it aids maintenance and
documents the reason for the warning which is useful for future development of the code and peer reviews. Often
the documentation method for a programming language will also allow for suppressing the compiler warning which

prevents false positive warning in the compiler output.

Referenced By:

Heed Compiler Warnings

Page 614

Part 5: Developer Guidance

BP1893
Statement:

Return meaningful, but unsensitive, information from exception handlers.

Rationale:

Purging or sanitizing exception shown to users reduces the risk of exposing information to a user that may be used
to form an exploit.

Referenced By:

Handle Exceptions

Page 615

Part 5: Developer Guidance

Glossary

Page 616

.NET

.NET Compact Framework

Part 5: Developer Guidance

To address the confusing maze of computer languages,
libraries, tools, and toolkits that were necessary for creating
multi-tier applications, Microsoft developed the .NET
Framework and integrated it into Microsoft Windows as

a component. It supports building and running multi-tier
and service-oriented architectures, including Web services
and client and server applications. It simplifies the process
of designing, developing, and testing software, allowing
individual developers to focus on core, application-specific
code.

The Microsoft .NET Compact Framework is a streamlined
version of the .NET Framework that is designed to run

on mobile devices with limited memory, resources, and
battery power, including smart devices like Personal Digital
Assistants (PDAs), mobile phones, and set-top boxes.

The .NET Compact Framework includes the base class
libraries from the full .NET Framework and a few libraries
designed specifically for mobile devices such as Windows CE
InputPanel.

Developers can create applications for the .NET Compact
Framework in Visual Studio .NET 2003, using Microsoft
Visual C# .NET or Microsoft Visual Basic .NET. The resulting
applications are designed to run on a special, mobile-device,
high performance JIT compiler.

To run .NET Compact Framework applications, the platform
must support the Microsoft .NET Compact Framework
runtime. This includes Windows CE.NET, Windows CE

4.1, Microsoft Pocket PC, Microsoft Pocket PC 2002, or
Smartphone 2003.

Architecture

The .NET Compact Framework is a subset of the .NET
Libraries. It includes only those aspects of the .NET
Library that are essential for the functionality. Several
namespaces and classes are used exclusively in

the .NET Library. Other namespaces, classes and
methods are in both the .NET Library and the .Net
Compact Library, and there are namespaces and
classes that are exclusive to the .Net Compact Library.

| .NET Libraries
HET .NET Closs A
Framswon C ¢ et A
Micthod A
oy Dmp?c Wathod B
NET Compact Libraries Mttt ¢
Framewnk . J
onily Class C Class B Class AR
Eoth et A Method A Westhund A
Wethod B Mathad B Methed B
I Method! © Methad © Mcthod ¢
1
ClassD || Class AAA
Method & Bethod 0 Mt A
Method B Method € Hethod D Methodd B
Wistlod B Mt F Ao
[
11145

Page 617

Part 5: Developer Guidance

Access Control Limiting access to information system resources only to
authorized users, programs, processes, or other systems.
(Source: National Information Assurance (IA) Glossary,
CNSSI 4009, revised June 2006)

Note:
See also the following:

. Access Control List (ACL) [GL1889]

. Discretionalry Access Control (DAC)

[GL1197]
. Role-Based Access Control (RBAC)
[GL1643]
Access Control List ACL In computer security, ACL is a concept used to enforce

privilege separation. It is a means of determining the
appropriate access rights to a given object depending on
certain aspects of the process that is making the request,
principally the process's user identity.

In networking, ACL refers to a list of ports and services

that are available on a host, each with a list of hosts and/

or networks permitted to use the service. Both individual
servers as well as routers can have access lists. Access lists
are used to control both inbound and outbound traffic, and

in this context they are similar to firewalls. (Source: http://
en.wikipedia.org/wiki/Access_control_list)

Accredited Standards ANSI ASC Numbered set of commercial EDI transactions defined by the

Committee Standard X12 X12 American National Standards Institute's Accredited Standards
Committee X12. Uniform rules for the interchange of business
documents defined for cross industry EDI use.

Active Directory AD An implementation of Lightweight Directory Access Protocol
(LDAP) directory services by Microsoft for use in Windows
environments; allows administrators to assign enterprise-
wide policies, deploy programs to many computers, and apply
critical updates to an entire organization. An Active Directory
stores information and settings relating to an organization in
a central, organized, accessible database. Active Directory
networks can vary from a small installation with a few hundred
objects, to a large installation with millions of objects. (Source:
http://en.wikipedia.org/wiki/Active_Directory)

Active Server Page ASP A script that is executed by Microsoft Internet Information
Services. The output is returned to the user as HTML.
Typically, an ASP script generates a customized Web page
on the fly before sending it to the user. ASPs are specific
to Microsoft, only run on IS or PWS, can contain HTML,
JScript, and VBScript, and can access COM components.

Page 618

http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
http://en.wikipedia.org/wiki/Active_Directory

ActiveX

Adapter

Aggregation

American National Standards
Institute

American National Standards
Institute Standard for
Electronic Data Interchange

American Standard Code for
Information Interchange

ANSI

ANSI X12

ASCII

Part 5: Developer Guidance

An ActiveX control is similar to a Java applet. However,
ActiveX controls have full access to the Windows OS.
This gives them much more power than Java applets, plus
a risk that the applet may damage software or data on
your machine. To control this risk, Microsoft developed

a registration system so that browsers can identify and
authenticate an ActiveX control before downloading it.
Another difference between Java applets and ActiveX controls
is that Java applets can be written to run on all platforms,
whereas ActiveX controls are currently limited to Windows
environments.

An intermediary that translates between incompatible
components interfaces, allowing them to communicate.

When information is derived from multiple sources a mediator

service may aggregate the data and thus make many services
appear to be one.

Aggregation

Chient

Nate: Dot andior
Pracess
Mediation

11148

Note: See Mediation.

Administrator and coordinator of the United States private-
sector voluntary standardization system. ANSI facilitates

the development of American National Standards (ANS)

by accrediting the procedures of standards-developing
organizations. The Institute remains a private, nonprofit
membership organization supported by a diverse constituency
of private and public sector organizations. (Source: http://

web.ansi.org/)

Numbered set of commercial electronic data interchange
(EDI) transactions defined by the American National
Standards Institute's Accredited Standards Committee X12.
Uniform rules for the interchange of business documents
defined for cross industry EDI use.

ASCIl is a character set and a character encoding based on

the Roman alphabet as used in modern English (see English
alphabet). ASCII codes represent text in computers, in other
communications equipment, and in control devices that work
with text. Most often, nowadays, character encoding has an

ASClII-like base.

ASCII defines the following printable characters, presented
here in numerical order of their ASCII value:

Page 619

http://web.ansi.org/
http://web.ansi.org/

Part 5: Developer Guidance

1" #$% () *+,-./0123456789:; ?
@\BCDEFGHI JKLMNOPQRSTUWKYZ[\]~
" abcdef ghi j kl mopqgr st uvwxyz{| } ~(

(Source: http://en.wikipedia.org/wiki/ASCII)

Apache Ant

Page 620

http://en.wikipedia.org/wiki/ASCII
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.dod.mil/nii/

Part 5: Developer Guidance

Asymmetric Key
Cryptography

Attribute

Authentication

Authorization

Basic Object Adapter BOA

Binary XML

Business Logic

Business Process Execution BPEL
Language

Business Process Execution BPEL4WS
Language for Web Services

Cascading Style Sheet Css

Certificate CERT

Synonym for Public Key Cryptography.

A distinct characteristic of an object. Real-world object
attributes are often specified in terms of their physical traits,
such as size, shape, weight, and color. Cyberspace object
attributes might describe size, type of encoding, and network
address. (Source: http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

The process that verifies the identity of a user, device, or
other entity in a computer system, usually as a prerequisite
to allowing access to resources in a system. The Java servlet
specification requires three types of authentication (basic,
form-based, and mutual) and supports digest authentication.
(Source: J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/
docs/glossary.html)

The process by which access to a method or resource is
determined. Authorization depends on the determination

of whether the principal associated with a request through
authentication is in a given security role. A security role

is a logical grouping of users defined by the person who
assembles the application. A deployer maps security roles
to security identities. Security identities may be principals or
groups in the operational environment. (Source: J2EE 1.4
Glossary, http://java.sun.com/j2ee/1.4/docs/glossary.html)

The Basic Object Adapter was an early (vl) CORBA
component; see the Portable Object Adapter (POA).

The code that implements the functionality of an application.
In the Enterprise JavaBeans architecture, this logic is
implemented by the methods of an enterprise bean. (Source:
J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/docs/

glossary.html)

BPEL is emerging as the standard for assembling a set of
discrete services into an end-to-end process flow, radically
reducing the cost and complexity of process integration
initiatives. (Source: http://www.oracle.com/technology/
products/ias/bpel/index.html)

Cascading Style Sheets (CSS) is a simple mechanism for
adding style (e.qg., fonts, colors, spacing) to Web documents.
(Source: http://lwww.w3.0rg/Style/CSS/)

A certificate which uses a digital signature to bind together a
public key with an identity information such as the name of

a person or an organization, their address, and so forth. The
certificate can be used to verify that a public key belongs to
an individual. (Source: http://en.wikipedia.org/wiki/Certificate_
%28cryptography%29)

Page 621

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.w3.org/Style/CSS/
http://en.wikipedia.org/wiki/Certificate_%28cryptography%29
http://en.wikipedia.org/wiki/Certificate_%28cryptography%29

Part 5: Developer Guidance

Certificate Authority CA A trusted organization which issues digital public key
certificates for use by other parties. It is an example of a
trusted third party. CAs are characteristic of many public key
infrastructure (PKI) schemes. (Source: http://en.wikipedia.org/
wiki/Certificate_authority)

Certificate Revocation List CRL A list of certificates (more accurately, their serial numbers)
which have been revoked, are no longer valid, and should
not be relied upon by any system user. (Source: http://
en.wikipedia.org/wiki/Certificate_Revocation_List)

Check Constraint A constraint based on a user-defined condition - generally
documented in a database domain - that has to evaluate to
true for the contents of a data base column to be valid.

Client A system entity that accesses a Web service. (Source:
http://www.oasis-open.org/committees/download.php/3343/
0asis-200304-wsrp-specification-1.0.pdf)

Client-Certificate An authentication mechanism that uses HTTP over SSL,

Authentication in which the server and (optionally) the client authenticate
each other with a public key certificate that conforms to a
standard that is defined by X.509 Public Key Infrastructure.
(Source: J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/
docs/glossary.html)

Cohesion The manner and degree to which the tasks performed
by a single software module are related to one another.
Types include coincidental, communicational, functional,
logical, procedural, sequential, and temporal. Synonym:
module strength. Contrast with coupling. In a well-designed,
highly modular software design, the modules will have high
cohesion; that is, each will have a clearly defined set of
functions that have a close relationship to each other. This
facilitates changes to modules since the changes will affect
only the closely-related functions. In contrast, modules that
contain multiple, unrelated functions blur the integrity of the
software's design since the unrelated functions are bound
into a single module, thereby creating dependencies that
inhibit the ability to easily make changes. (Source: IEEE Std
610.12-1990)

Collaboration Portal members can communicate synchronously through
chat or messaging, or asynchronously through threaded
discussion, blogs, and email digests (forums).

Command and Control Cc2 (DoD) The exercise of authority and direction by a properly
designated commander over assigned and attached forces
in the accomplishment of the mission. Command and
control functions are performed through an arrangement
of personnel, equipment, communications, facilities, and
procedures employed by a commander in planning, directing,
coordinating, and controlling forces and operations in the
accomplishment of the mission. (Source: http://www.dtic.mil/
doctrine/jel/doddict/data/c/01093.htm)

Page 622

http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Certificate_Revocation_List
http://en.wikipedia.org/wiki/Certificate_Revocation_List
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.dtic.mil/doctrine/jel/doddict/data/c/01093.html
http://www.dtic.mil/doctrine/jel/doddict/data/c/01093.html

Part 5: Developer Guidance

Command and Control C2IEDM A data model that is managed by the Multilateral
Information Exchange Data Interoperability Programme (MIP). It originated with experts
Model from various NATO partners and from the Partnership-for-

Peace nations. This data model is in the process of being
submitted to OMG for consideration as the standard for
information exchange. It falls under the shared operational
picture exchange service. (Source: http://www.mip-site.org/
MIP_DMWG.htm)

Page 623

http://www.mip-site.org/MIP_DMWG.htm
http://www.mip-site.org/MIP_DMWG.htm
http://en.wikipedia.org/wiki/Commercial_off-the-shelf
http://en.wikipedia.org/wiki/Commercial_off-the-shelf
http://www.dtic.mil/whs/directives/corres/html/852002.htm
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/CORBA

Part 5: Developer Guidance

Community of Interest COl A COl is a collaborative group of users that must exchange
information in pursuit of its shared goals, interests, missions,
or business processes nd therefore must have shared
vocabulary for the information it exchanges. (Source: DoDD
8320.02, 2 December 2004, Data Sharing in a Net-Centric
Department of Defense)

Community of Interest A service that may be offered to the enterprise, but is owned

Service and operated by a Community of Interest to provide or
support a well-defined set of mission functions and associated
information.

Compiler A computer program that translates programs expressed in a

high-order language into their machine language equivalent.
(Source: IEEE Std 610.12-1990)

Complex Semi-Structured Complex Semi-Structured Data has partial metadata. It

Data includes data defined in COBOL copybooks and Electronic
Data Interchange standards ANSI X.12 and Health Level 7
(HL7). Semi-structured data can be as complex or more so as
any Complex Structured data. It can map into or be XML. It
may also be missing some metadata or an XSD.

Complex Structured Data Complex Structured Data has well-defined metadata. It
includes data represented in XML documents with deeply
hierarchical and recursive structures. Complex data can be
represented in a complex data structure or can be mapped
into a relational or flat structure with additional metadata
provided to represent the complex relationships. Although
complex structured data is generically a property of object
oriented databases, the Complex Data Structures can be filled
from any source.

Complex Unstructured Data Complex Unstructured Data has little or no metadata. It
includes data in binary files, spreadsheets, documents, and
print streams.

Component One of the parts that make up a system. A component may
be hardware or software and may be subdivided into other
components. Note the terms module, component, and unit
are often used interchangeably or defined to be sub-elements
of one another in different ways depending on the context.
The relationship of these terms is not yet standardized.
(Source: IEEE Std 610.12-1990)

Note: See system component and software
component.

Component-Based Software Mission applications that are architected as components
integrated within a component framework.

Component Object Model COM A Microsoft software architecture for building component-
based applications. COM objects are discrete components,
each with a unique identity, which expose interfaces that
allow applications and other components to access their
features. COM objects are more versatile than Win32 DLLs
because they are completely language-independent, have

Page 624

http://www.dtic.mil/whs/directives/corres/pdf/832002p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/832002p.pdf

Conceptual Model

Condition

Confidentiality

Configuration Control Board CCB

Consumer

Container

Core Enterprise Services CES

Part 5: Developer Guidance

built-in inter-process communications capability, and easily
fit into an object-oriented program design. COM was first
released in 1993 with OLE2, largely to replace the inter-
process communication mechanism DDE used by the initial
release of OLE. ActiveX is based on COM.

Captures the concepts of the relational database and can help
enforce the first three normalization rules.

A variable of the operational environment or situation in which
a unit, system, or individual is expected to operate that may
affect performance.

A DDS Condition is attached to a WaitSet and

indicates which condition the application is waiting for
asynchronously: St at usCondi ti on, ReadCondi ti on or
QueryCondi tion.

The property that data is not made available to unauthorized
individuals, entities, or processes.

Also Change Control Board. Duties include reviewing change
requests, making decisions, and communicating decisions
made to affected groups and individuals. Represents the
interests of program and project management by ensuring
that a structured process is used to consider proposed
changes and incorporate them into a specified release of a
product.

A system entity invoking producers in a manner conforming
to a specification. For example, a portal aggregating content
from portlets accessed using the WSRP protocol is a type of
consumer. (Source: http://www.0asis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

A standard extension mechanism for containers that provides
connectivity to enterprise information systems. A connector
is specific to an enterprise information system. It consists of
a resource adapter and application development tools for
enterprise information system connectivity. The resource
adapter is plugged in to a container through its support for
system-level contracts defined in the Connector architecture.
(Source: J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/
docs/glossary.html)

Ubiquitous, common solution services that provide
capabilities essential to the operation of the enterprise.
Generic information services that apply to any COI, provide
the basic ability to search the enterprise for desired
information, and then establish a connection to the desired
service. (Source: http://www.defenselink.mil/nii/org/cio/doc/
GIG_ES_Core_Enterprise_Services_Strategy V1-la.pdf)

Page 625

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.defenselink.mil/nii/org/cio/doc/GIG_ES_Core_Enterprise_Services_Strategy_V1-1a.pdf
http://www.defenselink.mil/nii/org/cio/doc/GIG_ES_Core_Enterprise_Services_Strategy_V1-1a.pdf

Coupling

http://en.wikipedia.org/wiki/DBMS

Data-Centric Publish-
Subscribe

Data Dictionary

DCPS

Part 5: Developer Guidance

An approach for the design and implementation of systems,
applications, services or software that emphasis the data
rather than the operations. It implies that the data is physically
separated from the code and consequently can be maintained
independently (loose coupling between code and data).

The Data-Centric Publish-Subscribe is a lower level layer of
the DDS infrastructure that is targeted towards the efficient
delivery of the proper information to the proper recipients.

A data dictionary is set of metadata that contains definitions
and representations of data elements.

Within the context of a DBMS, a data dictionary is a read-
only set of tables and views. The data dictionary may be
considered a database in its own right.

Page 627

http://portals.omg.org/dds

Part 5: Developer Guidance
Data Element A data element is an atomic unit of data that has the following:

. an identification such as a data element name
. a clear data element definition

. one or more representation terms

. optional enumerated values

Data Element Gallery The Data Element Gallery is an important component of the
Metadata Registry and Clearinghouse. The Data Element
Gallery provides its users with access to data elements that
are commonly used by the Department of Defense such as
country codes and U.S. state codes. Users may search the
registry, compare data elements, and download an Access
database containing the available elements. See the DoD
Metadata Registry, http://metadata.dod.mil.

Data Exposure The steps necessary to set up the metadata infrastructure
associated with a net-centric data strategy.

Data Integrity A measure of the consistency and accuracy of computer data.
Integrity can be threatened by hardware problems, power
outages, and disk crashes, but most often is threatened
by application software or viruses. In a database program,
data integrity can be threatened if two users are allowed to
update the same item or record at the same time. Record or
File Locking, whereby only a single user is allowed access
to a given record at any one point in time is one method of
ensuring data integrity. (Source: http://www.courts.state.ny.us/
ad4/lib/gloss.html#D)

Data Local Reconstruction DLRL The Data Local Reconstruction Layer is an optional part of the
Layer DDS specification that provides a higher level layer allowing
for a simpler integration of the DDS into the application layer.

Data Modeling DM Modeling is an essential step in understanding the data that
will comprise a system. The end products of data modeling
can be XML schemas or RDBMS schema definitions. Many
COls create their own data models, such as C2IEDM for the
C2 community.

Page 628

http://metadata.dod.mil
http://www.courts.state.ny.us/ad4/lib/gloss.html#D
http://www.courts.state.ny.us/ad4/lib/gloss.html#D

Data Publishing

Data Structure

Data Type

DDS DataReader

DDS DataWriter

DDS DomainParticipant

DDS Global Data Space

DDS Listener

Part 5: Developer Guidance

The steps necessary to make data available within the net-
centric data strategy infrastructure.

In computer science, a data structure is a way of storing
data in a computer so that it can be used efficiently. Often
a carefully chosen data structure will allow a more efficient
algorithm to be used. The choice of the data structure often
begins from the choice of an abstract data structure. A well-
designed data structure allows a variety of critical operations
to be performed, using as few resources, both execution
time and memory space, as possible. Data structures

are implemented using the data types, references and
operations on them provided by a programming language.
(Source: http://en.wikipedia.org/wiki/Data_structure)

A data type is a constraint placed upon the interpretation of
data in a type system in computer programming. Common
types of data in programming languages include primitive
types (such as integers, floating point numbers or characters),
tuples, records, algebraic data types, abstract data types,
reference types, classes and function types. A data type
describes representation, interpretation and structure of
values manipulated by algorithms or objects stored in
computer memory or other storage device. The type system
uses data type information to check correctness of computer
programs that access or manipulate the data. (Source: http://
en.wikipedia.org/wiki/Data_type)

The DDS Dat aReader acts as a typed (i.e., dedicated to
only one application data type) accessor to a subscriber. The
Dat aReader class allows the application to declare the data
it wishes to receive (i.e., make a subscription) and access the
data received by the attached Subscriber.

A DDS Dat aW it er acts as a typed (i.e., dedicated to only
one application data type) accessor to a publisher. The

Dat aW i t er class allows the application to set the value of
the data to be published under a given Topic.

A DDS domain participant represents the local membership of
the computer process in a domain. A domain is a distributed
concept that links all the computer processes able to
communicate with each other. It represents a communication
plane; only the publishers and the subscribers attached to
the same domain may interact. A computer process can run
on the behalf of some user or application.

Underlying any data-centric publish subscribe system is a
data model. In DDS, this model defines the global data space
and specifies how Publishers and Subscribers refer to
portions of this space. (See DDS Domain)

A DDS Li st ener is used to provide a callback for
synchronous access. Listeners provide a generic mechanism
for the middleware to notify the application of relevant
asynchronous events, such as arrival of data corresponding
to a subscription, violation of a QoS setting, etc. Each DCPS

Page 629

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Data_type

DDS Publication

DDS Publisher

DDS Subscriber

DDS Subscriber Access API

DDS Subscription

DDS WaitSet

Defense Information Systems | DISA
Agency

Department of Defense DoD

Part 5: Developer Guidance

entity supports its own specialized kind of listener. Li st ener
operations are invoked using a middleware-provided thread.

A DDS publication is defined by the association of a
DataWriter to a publisher. This association expresses the
intent of the application to publish the data described by the
DataWriter in the context provided by the publisher.

A DDS publisher is an object responsible for data distribution.
It may publish data of different data types. The DataWriter

is the object the application must use to communicate to a
publisher the existence and value of data-objects of a given
type. When data-object values have been communicated

to the publisher through the appropriate Dat aW i t er , itis
the publisher's responsibility to perform the distribution (the
publisher will do this according to its own QoS, or the QoS
attached to the corresponding Dat aWi t er).

A DDS subscriber is an object responsible for receiving
published data and making it available (according to the
Subscriber's QoS) to the receiving application. It may receive
and dispatch data of different specified types. To access the
received data, the application must use a typed DataReader
attached to the subscriber.

DDS defines two APIs that provide subscriber access:
Listeners and the dual Condition/ WaitSet infrastructure
allow applications to be notified when changes occur in a
DCPS communication.

A DDS subscription is defined by the association of a
DataReader with a subscriber. This association expresses
the intent of the application to subscribe the data described by
the Dat aReader in the context provided by the subscriber.

A DDS Wit Set associated with one or several Condition
objects provides asynchronous data access. Wai t Set s

and their associated Condi t i ons provide the means for
an application thread to block waiting for the same events
that can be received via a Listener. Using a Wi t Set the
application can handle the event in its own thread instead of
the middleware provided thread used for Li st ener s.

Combat support agency responsible for planning,
engineering, acquiring, fielding, and supporting global
net-centric solutions to serve the needs of the President,
Vice President, the Secretary of Defense, and other DoD
Components, under all conditions of peace and war. (Source:
http://www.disa.mil/main/about/missman.html)

A civilian Cabinet organization of the United States
government. The Department of Defense controls the U.S.
military and is headquartered at The Pentagon. It is headed
by the Secretary of Defense. (Source: http://en.wikipedia.org/
wiki/United_States_Department_of Defense)

Page 630

http://www.disa.mil/main/about/missman.html
http://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://en.wikipedia.org/wiki/United_States_Department_of_Defense

Part 5: Developer Guidance

Deployment The process whereby software is installed into an
operational environment. (Source: J2EE 1.4 Glossary, http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Deployment Descriptor An XML file provided with each module and J2EE application
that describes how they should be deployed. The deployment
descriptor directs a deployment tool to deploy a module or
application with specific container options and describes
specific configuration requirements that a deployer must
resolve. (Source: J2EE 1.4 Glossary, http://java.sun.com/
j2ee/l.4/docs/glossary.html)

Deprecate Deprecation is the gradual phasing-out of features such as
guidance, software or programming language features.

Guidance, features or methods marked as deprecated are
considered obsolete, and further use is discouraged. The
guidance features or methods are still valid although error
messages as warnings may occur when they are referenced.
These serve to alert the user to the fact that the feature may
be removed in future releases.

Features get marked as deprecated, rather than simply
removed, in order to provide backward compatibility end
users.

Deserialization Deserialization is the reverse process of serialization. A
stream of data is converted back into a complex object.

Note: The process of transferring data using
serialization and deserialization is called

marshalling.
Digest A cryptographic checksum of an octet stream.
Digital Signature A value computed with a cryptographic algorithm and bound

to data in such a way that intended recipients of the data

can use the signature to verify that the data has not been
altered and/or has originated from the signer of the message,
providing message integrity and authentication. The signature
can be computed and verified with symmetric key algorithms,
where the same key is used for signing and verifying, or with
asymmetric key algorithms, where different keys are used for
signing and verifying (a private and public key pair are used).

Digital Signature Algorithm DSA The Digital Signature Algorithm (DSA) is a United States
Federal Government standard for digital signatures. It
was proposed by the National Institute of Standards and
Technology (NIST) in August 1991 for use in their Digital
Signature Standard (DSS), specified in Federal Information
Processing Standard (FIPS) 186, adopted in 1993. A minor
revision was issued in 1996 as FIPS 186-1, and the standard
was expanded further in 2000 as FIPS 186-2. (Source: http://
en.wikipedia.org/wiki/Digital_Signature_Algorithm)

Page 631

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm

Directory Service

Discretionary Access Control

Distributed Application

Distributed Component
Object Model

DAC

Part 5: Developer Guidance

A directory service organizes computerized content and
runs on a directory server computer. It is not to be confused
with the directory itself, which is the database that holds the
information about objects that are to be managed by the
directory service. The directory service is the interface to the
directory and provides access to the data that is contained

in that directory. It acts as a central authority that can
securely authenticate resources and manage identities and
relationships between them. (Source: http://en.wikipedia.org/
wiki/Directory_service)

Defines basic access control policies to objects in a file
system. Generally, these are done at the discretion of
the object owner: file/directory permissions and user/
group ownership. (Source: http://en.wikipedia.org/wiki/
Discretionary access_controlhttp://en.wikipedia.org/wiki/
Discretionary access_control)

An application made up of distinct components running in
separate runtime environments, usually on different platforms
connected via a network. Typical distributed applications are
two-tier (client-server), three-tier (client-middleware-server),
and multitier (client-multiple middleware-multiple servers).
(Source: J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/
docs/glossary.html)

Page 632

http://en.wikipedia.org/wiki/Directory_service
http://en.wikipedia.org/wiki/Directory_service
http://en.wikipedia.org/wiki/Discretionary_access_control
http://en.wikipedia.org/wiki/Discretionary_access_control
http://en.wikipedia.org/wiki/Discretionary_access_control
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://metadata.dod.mil/mdr/irs/DDMS/
http://metadata.dod.mil/mdr/irs/DDMS/

Part 5: Developer Guidance

DoD Metadata Registry As part of the overall DoD Net-Centric Data Strategy, the
DoD CIO established the DoD Metadata Registry (http://
metadata.dod.mil) and a related metadata registration
process for the collection, storage and dissemination of
structural metadata information resources (schemas, data
elements, attributes, document type definitions, style-sheets,
data structures, etc.). This Web-based repository is designed
to also act as a clearinghouse through which industry and
government coordination on metadata technology and related
metadata issues can be advanced. As OASD's Executive
Agent, DISA maintains and operates the DoD Metadata
Registry and Clearinghouse under the direction and
oversight of OASD(NII). (Source: DoD Metadata Registry v6.0
Web site, https://metadata.dod.mil/mdr/about.htm)

DoD Net-Centric Data This Strategy lays the foundation for realizing the benefits
Strategy of net-centricity by identifying data goals and approaches
for achieving those goals. To realize the vision for net-
centric data, two primary objectives must be emphasized:
(1) increasing the data that is available to communities
or the Enterprise and (2) ensuring that data is usable by
both anticipated and unanticipated users and applications.
(Source: Department of Defense Net-Centric Data Strategy,
DoD CIO, 9 May 2003, http://www.defenselink.mil/cio-nii/docs/
Net-Centric-Data-Strategy-2003-05-092.pdf)

DoD PKI Class 3 Assurance Applications handling unclassified medium value information

Level in Moderately Protected Environments, unclassified high
value information in Highly Protected Environments, and
discretionary access control of classified information in
Highly Protected Environments. This assurance level is
appropriate for applications that require identification of an
entity as a legal person, rather than merely as a member of
an organization.

Note: This definition is derived from the DoD Class
3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

DoD PKI High Assurance Applications that handle high value unclassified information
(mission critical) in minimally protected environments require
High Assurance certificates. Applications that are applicable
for High Assurance certificates include the following:

. All applications appropriate for DoD PKI Medium
Assurance certificates

. Digital signature services for unclassified Mission
Assurance Category | (MAC 1) or national security
information in an unencrypted network

. Protection (authentication and confidentiality) for
information crossing classification boundaries when
such a crossing is already permitted under a system
security policy (e.g., sending unclassified information
through a High Assurance Guard from SIPRNet to
NIPRNet)

Page 633

http://metadata.dod.mil
http://metadata.dod.mil
https://metadata.dod.mil/mdr/about.htm
http://www.defenselink.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf
http://www.defenselink.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf

Domain

Domain Analysis

Domain Name System DNS

Dynamic HTML DHTML

Dynamic Web Page

Electronic Business Using ebXML
eXtensible Markup Language

Electronic Data Interchange EDI

Electronic Data Interchange EDI-PI
Personnel Identifier

Part 5: Developer Guidance

(Source: adapted from X.509 Certificate Policy for the
United States Department of Defense, Version 9.0, 9
February 2005; http://iase.disa.mil/pki/dod-cp-v90-final-9-
feb-05-signed.pdf; DoD PKI Certificate required)

A group of related items within a certain area of interest.

In DDS, a domain is the basic construct used to bind
individual publications and subscriptions together

for communication. A distributed application can elect

to use single or multiple domains for its data-centric
communications. Domains isolate communication, promote
scalability and segregate different classifications of data. (See
Global Data Space)

The process of identifying the types of information that the
data model uses. A good data model captures descriptive
information about each of the types.

The Domain Name System stores information about
hostnames and domain names in a type of distributed
database on networks, such as the Internet. Of the many
types of information that can be stored, most importantly it
provides a physical location (IP address) for each domain
name, and lists the mail exchange servers accepting email for
each domain.

The DNS provides a vital service on the Internet as it allows
the transmission of technical information in a user-friendly
way. While computers and network hardware work with 1P
addresses to perform tasks such as addressing and routing,
humans generally find it easier to work with hostnames and
domain names (such as www.example.com) in URLs and
email addresses. The DNS therefore mediates between the
needs and preferences of humans and of software.

Designates a technique of creating interactive web sites by
using a combination of the static markup language HTML,
a client-side scripting language such as JavaScript, and the
style definition language Cascading Style Sheets. (Source:
http://en.wikipedia.org/wiki/Dynamic_web_page)

See DHTML.

ebXML is a modular suite of specifications that enables
enterprises of any size and in any geographical location to
conduct business over the Internet. Using ebXML, companies
now have a standard method to exchange business
messages, conduct trading relationships, communicate data
in common terms and define and register business processes.
(Source: http://www.ebxml.org/geninfo.htm)

Standard formats for exchanging business data and
documents.

A unique number assigned to each recipient of a
Common Access Card (CAC), which is issued by
the United States Department of Defense through
the Defense Enrollment Eligibility Reporting System

Page 634

http://iase.disa.mil/pki/dod-cp-v90-final-9-feb-05-signed.pdf
http://iase.disa.mil/pki/dod-cp-v90-final-9-feb-05-signed.pdf
http://en.wikipedia.org/wiki/Dynamic_web_page
http://www.ebxml.org/geninfo.htm

Encryption

Endpoint

End User

Enterprise

Enterprise Application
Archive

Enterprise Application
Integration

Enterprise Java Bean

EAR

EAI

EJB

Part 5: Developer Guidance

(DEERS). (Source: http://en.wikipedia.org/wiki/
Electronic_Data_Interchange_Personal_ldentifier)

Encryption is the process of obscuring information to make
it unreadable without special knowledge. While encryption
has been used to protect communications for centuries, only
organizations and individuals with an extraordinary need

for secrecy have made use of it. In the mid-1970s, strong
encryption emerged from the sole preserve of secretive
government agencies into the public domain, and is now
employed in protecting widely-used systems, such as
Internet e-commerce, mobile telephone networks and bank
automatic teller machines. (Source: http://en.wikipedia.org/

wiki/Encryption)

The URL or location of the Web service on the internet.

A human user of information. This is distinct from those who
develop or support the automated systems that provide

the information. -OR- A person who uses a device-specific
user agent to access a Web site. (Source: http://www.oasis-
open.org/committees/download.php/3343/0asis-200304-wsrp-
specification-1.0.pdf)

An organization considered as an entity or system

that includes interdependent resources (e.g., people,
organizations, and technology) that must coordinate functions
and share information in support of a common mission or a
set of related missions.

In the computer industry, the term is often used to describe
any large organization that utilizes computers. An intranet,
for example, is a good example of an enterprise computing
system. (Source: http://www.webopedia.com/TERM/e/

enterprise.html)

A JAR archive that contains a J2EE application. It contains
all the JAR, WAR, and RAR archives for an enterprise
application, plus an XML descriptor. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Software to effect interface between enterprise software
systems. Provides interface at the application layer.

A server-side component architecture for the development
and deployment of object-oriented, distributed, enterprise-
level applications. Applications written using the Enterprise
JavaBeans architecture are scalable, transactional,

and secure. (Source: http://java.sun.com/j2ee/1.4/docs/

glossary.html)

Page 635

http://en.wikipedia.org/wiki/Electronic_Data_Interchange_Personal_Identifier
http://en.wikipedia.org/wiki/Electronic_Data_Interchange_Personal_Identifier
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Encryption
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.webopedia.com/TERM/e/enterprise.html
http://www.webopedia.com/TERM/e/enterprise.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 5: Developer Guidance

Enterprise Service A service that provides capabilities to the enterprise. See
also Core Enterprise Service and Community of Interest
Service.

Environment Variable Environment variables are a set of dynamic values that can

affect the way running processes will behave. (Source: http://
en.wikipedia.org/wiki/Environment_variable)

eXtensible Access Control XACML XACML is used to represent and evaluate access control

Markup Language policies. XACML is designed to standardize the use of
declarative policy to control access to resources. Used with
SAML.

eXtensible Markup Language | XML A markup language defines tags (markup) to identify the

content, data, and text in XML documents. It differs from
HTML, the markup language most often used to present
information on the Internet. HTML has fixed tags that deal
mainly with style or presentation. An XML document must
undergo a transformation into a language with style tags
under the control of a style sheet before it can be presented
by a browser or other presentation mechanism. Two types

of style sheets used with XML are CSS and XSL. Typically,
XML is transformed into HTML for presentation. Although
tags can be defined as needed in the generation of an XML
document, you can use a document type definition (DTD) to
define the elements allowed in a particular type of document.
A document can be compared by using the rules in the DTD
to determine its validity and to locate particular elements in
the document. A Web services application's J2EE deployment
descriptors are expressed in XML with schemas defining
allowed elements. Programs for processing XML documents
use SAX or DOM APIs. (Source: http://java.sun.com/j2ee/1.4/
docs/glossary.html)

eXtensible Stylesheet XSL Extensible Stylesheet Language (XSL) is a family of
Language recommendations for defining XML document transformation
and presentation. It consists of three parts:

. XSL Transformations (XSLT): a language for
transforming XML

. XML Path Language (XPath): an expression language
used by XSLT to access or refer to parts of an XML
document

. XSL Formatting Objects (XSL-FO): an XML vocabulary
for specifying formatting semantics

(Source: http://lwww.w3.0rg/Style/XSL/)

Facade Provides a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface that
makes the subsystem easier to use. This can simplify a
number of complicated object interactions into a single

interface.
Federal Information FIPS Under the Information Technology Management Reform Act
Processing Standard (Public Law 104-106), the Secretary of Commerce approves

Page 636

http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.w3.org/Style/XSL/

Font Size

FORCEnet

Foreign Key

Global Command and

Control System

Fn

FK

GCCS

Part 5: Developer Guidance

standards and guidelines that are developed by the National
Institute of Standards and Technology (NIST) for Federal
computer systems. These standards and guidelines are
issued by NIST as Federal Information Processing Standards
(FIPS) for use government-wide. NIST develops FIPS when
there are compelling Federal government requirements

such as for security and interoperability and there are no
acceptable industry standards or solutions. (Source: http://
www.itl.nist.gov/fipspubs/geninfo.htm)

The font size refers to the size of the font from baseline to
baseline, when set solid (in CSS terms, this is when the
font-size and line-height properties have the same value).
(Source: http://lwww.w3.0rg/TR/REC-CSS2/fonts.html)

An operational construct and architectural framework that
integrates the SEAPOWER21 concepts of Sea Strike,

Sea Shield, and Sea Basing by connecting warriors;
sensors, networks; command and control; platforms and
weapons; providing accelerated speed and accuracy

of decision; and integrating knowledge to dominate the
battlespace. FORCEnet provides the following capabilities:
expeditionary, multi-tiered, sensor and weapon grids;
distributed, collaborative, command and control; dynamic,
multi-path survivable networks; adaptive/automated decision
aids; and human-centric integration.

An attribute in a relation of a database that serves as the
primary key of another relation in the same database.

Students
Sradent 14 SredemtName Znbject Major Id
11343 Jokn Do 4
{3574 Tans O Poblic e
s Dl Dovagis
Primary Key Foreign Key
F
Subject Major
Subjea Majerld Znbject M jor Name I_ Phon ¢ Number
E Coomprater Scimncs
[T (Cioempraier Fagd nmed ng
37 gt e T i nn e s
1156

GCCS-J is the DOD joint C2 system of record for achieving
full spectrum dominance. It enhances information superiority
and supports the operational concepts of full-dimensional
protection and precision engagement. GCCS-J is the principal
foundation for dominant battlespace awareness, providing an
integrated, near real-time picture of the battlespace necessary
to conduct joint and multinational operations. It fuses select
C2 capabilities into a comprehensive, interoperable system
by exchanging imagery, intelligence, status of forces, and
planning information. GCCS-J offers vital connectivity to

the systems the joint warfighter uses to plan, execute, and
manage military operations.

Page 637

http://www.itl.nist.gov/fipspubs/geninfo.htm
http://www.itl.nist.gov/fipspubs/geninfo.htm
http://www.w3.org/TR/REC-CSS2/fonts.html

Graphical User Interface

Hard Code

Hierarchical Database

High Availability

Hypertext Markup Language

Hypertext Transfer Protocol

GUI

HTML

HTTP

Part 5: Developer Guidance

GCCS-J is a Command, Control, Communications, Computer,
and Intelligence (C4l) system, consisting of hardware,
software, procedures, standards, and interfaces that provide a
robust, seamless C2 capability. The system uses the Defense
Information Systems Network (DISN) and must work over
tactical communication systems to ensure connectivity with
deployed forces in the tactical environment. (Source: http://
www.disa.mil/gccs-j/)

A program that lets the user interact with a computer system
in a highly visual manner, with a minimum of typing. Graphical
user interfaces usually require a high-resolution display and
a pointing device, such as a computer mouse. (Source: http://
www.oreilly.com/catalog/debian/chapter/book/glossary.html)

To hard code or hard coding (also, hard-code/hard-coding,
hardcode/hardcoding) refers to the software development
practice of embedding output or configuration data directly
into the source code of a program or other executable object,
or fixed formatting of the data, instead of obtaining that data
from external sources or generating data or formatting in the
program itself with the given input.

Considered an anti-pattern or Bad Thing, hard coding
requires the program's source code to be changed any time
the input data or desired format changes, when it might be
more convenient to the end user to change the detail by some
means outside the program. (Source: http://en.wikipedia.org/
wiki/Hard_code; 12 June 2007)

A hierarchical database defines a set of parent-child
relationships. Their use should be limited to integration of
existing databases, such as IBM's Informational Management
System (IMS). Hierarchical database systems require
developers to predict all possible access patterns in advance
and design the database accordingly. A database access
pattern that is not included in the design becomes very
difficult and inefficient.

Data tier availability can be affected by hardware failure,
power outages, data errors, user errors, programmer
errors, OS errors, and RDBMS errors. Various hardware
and software methods help mitigate availability issues.
The more reliable a system needs to be, the more it costs.
Consequently, defining availability to meet requirements is
essential to controlling costs.

A markup language for hypertext documents on the Internet.
HTML supports embedding images, sounds, video streams,
form fields, references to other objects with URLs, and basic
text formatting. (Source: http://java.sun.com/j2ee/1.4/docs/

glossary.html)

The Internet protocol used to retrieve hypertext objects from
remote hosts. HTTP messages consist of requests from client
to server and responses from server to client. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Page 638

http://www.disa.mil/gccs-j/
http://www.disa.mil/gccs-j/
http://www.oreilly.com/catalog/debian/chapter/book/glossary.html
http://www.oreilly.com/catalog/debian/chapter/book/glossary.html
http://en.wikipedia.org/wiki/Hard_code; 12 June 2007
http://en.wikipedia.org/wiki/Hard_code; 12 June 2007
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 5: Developer Guidance

Hypertext Transmission HTTPS HTTPS is the secure version of HTTP, the communication
Protocol Over SSL protocol of the World Wide Web. It was invented by Netscape
Communications Corporation to provide authentication
and encrypted communication and is used in electronic
commerce.

Instead of using plain text socket communication, HTTPS
encrypts the session data using either a version of the SSL
(Secure Socket Layer) protocol or the TLS (Transport Layer
Security) protocol, thus ensuring reasonable protection from
eavesdroppers, and man in the middle attacks. The default
TCP/IP port of HTTPS is 443. (Source: http://en.wikipedia.org/

wiki/HTTPS)

Identity Identity refers to the nature or attributes of the track: Friend,
Assumed Friend, Neutral, Unknown, Pending, Suspect, or
Hostile.

Image Map An image or graphic that has been coded to contain

interactive areas. When it is clicked on, it launches another
Web page or program. An image map usually has many
different hyperlinked areas, known as links. For example,

an image map of a country could be coded so that when

a user clicks on a city or region, the browser is routed to a
document or Web page about that place. (Source: http://
www.netlingo.com/right.cfm?term=clickable%20graphic%20or

%20imagemap)

Information Data to which meaning is assigned, according to context
and assumed conventions. Data that has been interpreted,
translated, or transformed to reveal the underlying meaning.

Information Assurance 1A Measures taken to protect and defend our information and
information systems to ensure Confidentiality, Integrity,
Availability, and Accountability, extended to restoration with
protect, detect, monitor, and react capabilities.

Information Technology IT Any equipment or interconnected system or subsystem
of equipment, that is used in the automatic acquisition,
storage, manipulation, management, movement, control,
display, switching, interchange, transmission, or reception
of data or information. Information technology includes
computers, ancillary equipment, software, firmware, and
similar procedures, services (including support services),
and related resources. Information technology does not
include any equipment that is acquired by a federal contractor
incidental to a federal contract. (Source: CJCSI 6212.01D, 8
March 2006, Glossary page GL-11)

Page 639

http://en.wikipedia.org/wiki/HTTPS
http://en.wikipedia.org/wiki/HTTPS
http://www.netlingo.com/right.cfm?term=clickable%20graphic%20or%20imagemap
http://www.netlingo.com/right.cfm?term=clickable%20graphic%20or%20imagemap
http://www.netlingo.com/right.cfm?term=clickable%20graphic%20or%20imagemap

Part 5: Developer Guidance
Infrastructure

Integrated Development IDE
Environment

Integration Integration is the action or process of combining elements
so that they become a whole. Vertical integration acts within
a system, whereas horizontal integration acts between or
among systems. In the net-centric environment, integration
creates links between computer systems, applications,
services, or processes. The word is normally used in the
context of computing, but can apply to business processes
as much as to the underlying process automation. In the
past, computer integration such as enterprise application
integration (EAI) has typically been tightly coupled, or "hard
wired," making it difficult to adapt to changing requirements.
Thanks to the advent of Web services and the evolution of
service-oriented architectures, more agile, loosely coupled
forms of integration are starting to emerge.

Integrity The property that data has not been modified (digital
signature).

Interface

Page 640

http://java.sun.com/javaee/reference/glossary/index.jsp#120354
http://java.sun.com/javaee/reference/glossary/index.jsp#120354
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Internet
http://www.ietf.org/overview.html
http://www.ietf.org/overview.html

Part 5: Developer Guidance

and HTTP/HTTPS. Earlier versions also included a Gopher
server.

Internet Inter-ORB Protocol IOP A protocol used for communication between CORBA object
request brokers. (Source: http://java.sun.com/j2ee/1.4/docs/

glossary.html)

Internet Protocol IP Data packets routed across network, not switched via
dedicated circuits.

Page 641

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Interoperability

Intranet

ISO/IEC 11179

ISO-11170

Part 5: Developer Guidance

The ability of systems, units, or forces to provide data,
information, materiel, and services to and accept the
same from other systems, units, or forces, and to

use the data, information, materiel, and services so
exchanged to enable them to operate effectively together.
IT and NSS interoperability includes both the technical
exchange of information and the end-to-end operational
effectiveness of that exchanged information as required
for mission accomplishment. Interoperability is more

than just information exchange. It includes systems,
processes, procedures, organizations, and missions

over the life cycle and must be balanced with information
assurance. (Source: CJCSI 6212.01D, Interoperability and
Supportability of Information Technology and National
Security Systems, 8 March 2006)

An intranet is a local area network (LAN) used internally in
an organization to facilitate communication and access to
information that is sometimes access-restricted. Sometimes
the term refers only to the most visible service, the internal
web site. The same concepts and technologies of the Internet
such as clients and servers running on the Internet protocol
suite are used to build an intranet. HTTP and other internet
protocols are commonly used as well, especially FTP and
email. There is often an attempt to use internet technologies
to provide new interfaces with corporate "legacy” data and
information systems. (Source: http://en.wikipedia.org/wiki/
Intranet)

See ISO-11170.

Page 642

http://www.dtic.mil/cjcs_directives/cdata/unlimit/6212_01.pdf
http://en.wikipedia.org/wiki/Intranet
http://en.wikipedia.org/wiki/Intranet
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 5: Developer Guidance

and managed by the J2EE server or client container. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

J2EE Server The runtime portion of a J2EE product. A J2EE server
provides EJB or Web containers or both. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Java Java is a reflective, object-oriented programming language
developed initially by at Sun Microsystems. It was intended to
replace C++, although the feature set better resembles that
of Objective-C. Java should not be confused with JavaScript,
which shares only the name and a similar C-like syntax. Sun
Microsystems currently maintains and updates Java regularly.

Specifications of the Java language, the Java Virtual Machine
(JVM) and the Java API are community-maintained through
the Sun-managed Java Community Process.

Java 2 Platform, Enterprise J2EE The J2EE environment is the standard for developing

Edition component-based multi-tier enterprise applications. The
J2EE platform consists of a set of services, application
programming interfaces (APIs), and protocols that provide
the functionality for developing multitiered, Web-based
applications. Features include Web services support and
development tools. Sun Microsystems has simplified the
name of the Java platform for the enterprise; the "2" is
dropped from the name, as well as the dot number so the
next version of the Java platform for the enterprise is Java
Platform, Enterprise Edition 5 or Java EE 5.(Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Java Archive JAR A platform-independent file format that enables you to
bundle multiple files into a single archive file. JAR files are
packaged with the ZIP file format, so you can use them for
ZIP-like tasks such as lossless data compression, archiving,
decompression, and archive unpacking. Typically JAR files
contain the class files and auxiliary resources associated
with applets and applications. (Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

Java Class Files Class files contain bytecodes for the Java Virtual Machine.
They are normally produced by a compiler for the Java
programming language.

A Java interpreter can then read these files and execute the
code contained within.

Java Connector Architecture The J2EE Connector Architecture defines a standard
architecture for connecting the J2EE platform to
heterogeneous EISs [enterprise information systems].
Examples of EISs include ERP, mainframe transaction
processing, database systems, and legacy applications not
written in the Java programming language. By defining a a
set of scalable, secure, and transactional mechanisms, the
J2EE Connector architecture enables the integration of EISs
with application servers and enterprise applications. (Source:
http://java.sun.com/j2ee/connector/reference/industrysupport/
index.html)

Page 643

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/connector/reference/industrysupport/index.html
http://java.sun.com/j2ee/connector/reference/industrysupport/index.html

Part 5: Developer Guidance

Java Database Connection JDBC An API that supports database and data-source access from
Java applications.

Java Development Kit JDK

Javadoc Javadoc is a computer software tool from Sun Microsystems
for generating APl documentation into HTML format from
Java source code. Javadoc is the industry standard for
documenting Java classes. Most Integrated Development
Environments (IDEs) will automatically generate Javadoc
HTML. (Source: http://en.wikipedia.org/wiki/Javadoc)

Java Message Service JMS An API for invoking operations on enterprise messaging
systems. (Source: http://java.sun.com/j2ee/1.4/docs/

lossary.html)

Java Naming and Directory JNDI An API that provides naming and directory functionality.

Interface (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

Java Platform, Enterprise Java EE Java Platform, Enterprise Edition (Java EE) is the industry

Edition standard for developing portable, robust, scalable and secure

server-side Java applications. Building on the solid foundation
of the Java Platform, Standard Edition (Java SE), Java EE
provides Web services, component model, management, and
communications APIs that make it the industry standard for
implementing enterprise-class service-oriented architecture
(SOA) and next-generation Web applications.

Sun Microsystems has simplified the name of the Java
platform for the enterprise. Formerly, the platform was known
as Java 2 Platform, Enterprise Edition (J2EE), and specific
versions had "dot numbers" such as J2EE 1.4. The "2" is
dropped from the name, as well as the dot number so the

Page 644

http://en.wikipedia.org/wiki/Javadoc
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/javaee/
http://java.sun.com/javaee/
http://java.sun.com/j2ee/1.4/docs/glossary.html

JScript

Just-In-Time Compilation

Key Recovery Manager

Keystore

Knowledge
Land C2 Information
Exchange Data Model

Light Directory Access
Protocol

Linked Style Sheets

Local Area Network

JIT

KRM

LC2IEDM

LDAP

LAN

Part 5: Developer Guidance

Microsoft's extended implementation of ECMAScript
(ECMA262), an international standard based on Netscape's
JavaScript and Microsoft's JScript languages. JScript is
implemented as a Windows Script engine. This means that
you can plug it in to any application that supports Windows
Script, such as Internet Explorer, Active Server Pages, and
Windows Script Host. It also means that any application
supporting Windows Script can use multiple languages:
JScript, VBScript, Perl, and others.

This is the primary method by which .NET executes MSIL.
As the MSIL is executed, the code is compiled and optimized
for the executing environment. JIT compilation provides
environment optimization, runtime type safety, and assembly
verification. To accomplish this, the JIT compiler examines
the assembly metadata for any illegal accesses and handles
violations appropriately.

A service of the DOD PKI where copies of key pairs used
for encryption are stored and can be recovered for law
enforcement purposes.

Note: This definition is derived from the DoD Class
3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

A file containing the keys and certificates used for
authentication. (Source: http://java.sun.com/j2ee/1.4/docs/

glossary.html)

(Unlike information or data) Requires the presence of context,
semantics, and purpose.

A set of protocols for accessing information directories. LDAP
is a simpler version of the X.500 standard. Unlike X.500, LD
Web Services for Interactive Applications AP supports TCP/
IP, which is necessary for Internet access. Because it's a
simpler version of X.500, LDAP is sometimes called X.500-
lite.

LDAP is a protocol for accessing on-line directory services.
(Source: http://en.wikipedia.org/wiki/LDAP)

Style sheets that are placed in a separate text files and saved
in the root with a css file extension. A link to the file is made in
the head section of the document.

<head><Br eak/ > <l i nk<Break/ > rel ="styl esheet " <Br eak/ >
href ="nystyl e. css"<Break/ > type="t ext/css" ><Br eak/ ></
head><Br eak/ >

A group of interconnected computer and support devices.
(Source: http://www.sun.com/products-n-solutions/hardware/
docs/html/817-6210-10/glossary.html)

Page 645

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/LDAP
http://www.sun.com/products-n-solutions/hardware/docs/html/817-6210-10/glossary.html
http://www.sun.com/products-n-solutions/hardware/docs/html/817-6210-10/glossary.html

Look and Feel

Loosely Coupled

Marshalling

Mediation

Message

Part 5: Developer Guidance

Look and feel refers to design aspects of a graphical user
interface in terms of colors, shapes, layout, typefaces, etc.
(the "look™); and, the behavior of dynamic elements such
as buttons, boxes, and menus (the "feel"). It is used in
reference to both software and Web sites. (Source: http://
en.wikipedia.org/wiki/Look_and_feel)

A computing model where application elements require

a simple level of coordination and allow for flexible
reconfiguration. Interconnection is often asynchronous and
message-based.

The process of transferring data using serialization and
deserialization is called marshalling.

Ohject A Ohject B

01101101010...

11158

A set of negotiated agreements for interacting between
components that enable those components to work together
to perform a task. These agreements are defined through
standard interfaces and data interchange specifications.

Mediation services provide multiple methods for integrating
data sources and services:

Transformation Whenl|a client requests
particular format, a tra
the data before returni

Aggregation A mediator service ma
multiple sources, thus
be one

Adaptation Whenl|a client cannot ¢

service, an adapter pre
transport protocol as w
need to communicate |

Orchestration Co-ordination of event
directs and manages t
multiple component se
application or busines:s

Choreography Whenl|a client request
or service requests the
coordinator, a Choreoc
when to execute other
services to interact; W
business process man
implements choreogra

A complete unit of data available to be sent or received by
services. It is a self-contained unit of information exchange. A

Page 646

http://en.wikipedia.org/wiki/Look_and_feel
http://en.wikipedia.org/wiki/Look_and_feel

Message-Oriented
Middleware

Metadata

Metadata Registry

Microsoft Intermediate
Language

Microsoft Message Queue

MOM

MSIL

MSMQ

Part 5: Developer Guidance

message always contains a SOAP envelope, and may include
additional MIME parts as specified in MTOM, and/or transport.

Message-oriented middleware acts as an arbitrator between
incoming and outgoing messages to insulate producers and
consumers from other producers and consumers.

Data about the data, that is, the description of the data
resources, its characteristics, location, usage, and so on.
Metadata is used to identify, describe, and define user data.

A Metadata Registry is a central place where metadata
definitions are stored and maintained. A metadata registry
typically has the following characteristics:

. It is a protected area where only approved individuals
may make changes

. It stores data elements that include both semantics and
representations

. The semantic areas of a metadata registry contain the
meaning of a Data Element with precise definitions

. The representational areas define how the data is
represented in a specific format such as within a
database or a structure file format such as XML

Metadata Registries often are stored in an international format
called 1ISO-11170.

An intermediate instruction set into which all .NET languages
compile. You can execute MSIL code on any environment
that supports the .NET framework. MSIL-compiled code is
verified for safety during runtime, providing better security and
reliability than natively compiled binaries.

During compilation, .NET code is translated into Microsoft
Intermediate Language (MSIL) rather than machine-specific
binary code. MSIL is a machine- and platform-independent
instruction set that can be executed in any environment
within the .NET framework. .NET uses just-in-time (JIT)
compilation as its primary means of executing MSIL. You
can generate native binary images using Microsoft's Native
Image Generator (NGEN).

Messaging in .NET uses Microsoft Message Queue (MSMQ).
MSMQ is responsible for reliably delivering messages
between applications inside and outside the enterprise.
MSMQ ensures reliable delivery by placing messages that
fail to reach their intended destination in a queue and then
resending them once the destination is reachable.

Page 647

Mission

Model-Driven Architecture

MDA

Part 5: Developer Guidance

o {,.-f’_ _'L_':_x.______}
e —
AppBcation
I
Consunme
A lic atieai
112

MSMQ also supports transactions. It permits multiple
operations on multiple queues, with all of the operations
wrapped in a single transaction, thus ensuring that either all
or none of the operations will take effect. Microsoft Distributed
Transaction Coordinator (MSDTC) supports transactional
access to MSMQ and other resources.

The task, together with the purpose, that clearly indicates the
action to be taken and the reason for that action.

Model-driven architecture is a trademarked term denoting

a specific approach to the development of software using
models as the basis. The MDA specifies system functionality
separately from the implementation of that functionality on

a specific technology platform. To accomplish this goal,

the MDA defines an architecture that provides a set of
guidelines for structuring specifications expressed as models.
The MDA model architecture relates multiple standards,
including Unified Modeling Language (UML), the Meta Object
Facility (MOF), the XML Metadata interchange (XMl), and
the Common Warehouse Metamodel (CWM). Note that the
term "architecture" in MM does not refer to the architecture
of the system being modeled, but rather to the architecture
of the various standards and model forms that serve as the
technology basis for MDA .

Page 648

Module

Multi-Purpose Internet Malil
Extensions

Namespace

National Security Systems

Native Image Generator

MIME

NSS

NGEN

Part 5: Developer Guidance

(1) A program unit that is discrete and identifiable with respect
to compiling, combining with other units, and loading; for
example, the input to, or output from, an assembler, compiler,
linkage editor, or executive routine. (2) A logically separable
part of a program. Note: The terms module, component,

and unit are often used interchangeably or defined to be
sub-elements of one another in different ways depending
upon the context. The relationship of these terms is not yet
standardized. See also component. (Source: IEEE Std
610.12-1990)

A namespace is an abstract container which contains a logical
grouping of unique identifiers (i.e., names). An identifier
defined in a namespace is associated with that namespace.

It is possible to define the same identifier independently

in multiple namespaces. That is, the meaning associated

with an identifier defined in one namespace may or may not
have the same meaning as the same identifier defined in
another namespace. Languages that support namespaces
specify the rules that determine to which namespace an
identifier (i.e., not its definition) belongs. (Adapted from: http://
en.wikipedia.org/wiki/Namespace_%28computer_science
%29; accessed 2/6/2008)

XML namespaces provide a simple method for qualifying
element and attribute names used in Extensible Markup
Language documents by associating them with namespaces
identified by URI references. (Source http://www.w3.0rg/TR/
REC-xml-names/)

Telecommunications and information systems, operated by
the Department of Defense, the functions, operation, or use
of which involves: (1) intelligence activities; (2) cryptologic
activities related to national security; (3) the command and
control of military forces; (4) equipment that is an integral part
of a weapon or weapons systems; or (5) is critical to the direct
fulfillment of military or intelligence missions. Subsection (5)
in the preceding sentence does not include procurement of
automatic data processing equipment or services to be used
for routine administrative and business applications (including
payroll, finance, logistics, and personnel management
applications). (Source: CJCSI 3170.01F, 1 May 2007, page
GL-16)

NGEN compilation enables you to production of a native
binary image of MSIL code for the current environment.
This improves the performance of the .NET application by
eliminating the JIT overhead associated with the execution.
Running NGEN against an assembly, the resulting native
image is placed in the Global Assembly Cache for use by all
other .NET assemblies.

NGEN is a good tool for improving performance of .NET
applications as long as the executing environment remains
static. If executing an NGEN-generated image in an
incompatible environment, .NET automatically reverts to using

Page 649

http://en.wikipedia.org/wiki/Namespace_%28computer_science%29
http://en.wikipedia.org/wiki/Namespace_%28computer_science%29
http://en.wikipedia.org/wiki/Namespace_%28computer_science%29
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.dtic.mil/cjcs_directives/cdata/unlimit/3170_01.pdf

Part 5: Developer Guidance

JIT. To mitigate this, run NGEN during deployment against
the installed assemblies.

Page 650

Native XML Database

Natural Key

Niche Databases

Nonce

Normalization

North Atlantic Treaty NATO
Organization

Part 5: Developer Guidance

Defines a logical model for an XML document (as opposed
to the data in that document) and stores and retrieves
documents according to that model. These databases are
accessed via programming interfaces such as SAX, DOM,
or JDOM. There is a trend away from pure XML storage
because all the leading relational database vendors are
introducing advanced XML capabilities.

A Natural Key is a primary keys that is made up completely or
in part from naturally occurring data in the tables.

Students: Natural Keys
Name Address Phone
Jobm Pubbic [200 Ash 5, 00555124
Homedoam, 54
Jane Dioe 1A Ekn Ave, 05551212
Homedoram, 54
Courses:
Manue Course # Mane
Jane Dice B0 Trtro Bio
Tane Dice CIO Trtro Chem
Tane Dice FI0 Tedo Fly
Tane Dice ETO0 Enghshl
Jokm Pulilie (s u1] Trtves Choem
Jolm Pubhe Fl Ivtwo Pl

If the student name “Jane Doe™ changes, all
occurrences of the name must be changed,

1163

See Surrogate Key and Primary Key.

Various vendors create niche databases in response to
shortcomings in relational databases. Market domination by
large vendors has made it hard for small vendors to break
into the market, so niche database vendors mainly provide
supporting tools.

A unigue random string.

Normalization avoids duplication of data, insert anomalies,
delete anomalies, and update anomalies. A relation is in

first normal form (1NF) if and only if all underlying simple
domains contain atomic values only. A relation is in second
normal form (2NF) if and only if it is in 1NF and every non-key
attribute is fully dependent on the primary key. A relation is

in third normal form (3NF) if and only if it is in 2NF and every
non-key attribute is non-transitively dependent on the primary
key. Data models should follow the three forms unless there
is overriding justification not to. (Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

NATO is an international organization for defense
collaboration established in 1949, in support of the North
Atlantic Treaty signed in Washington, D.C., on April 4, 1949.

Page 651

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Object Management Group

Object-Oriented Analysis

Object-Oriented Databases

Object-Oriented Design

Object-Oriented

Programming Language

Object Request Broker

Online Certificate Status
Protocol

Online Status Check

OMG

OOA

OODBMS

ORB

OCSP

0sC

Part 5: Developer Guidance

Its other official name is the French equivalent, I'Organisation
du Trait de I'Atlantique du Nord (OTAN).

OMGTM is an international, open membership, not-for-

profit computer industry consortium. OMG Task Forces
develop enterprise integration standards for a wide range

of technologies, and an even wider range of industries.
OMG's modeling standards enable powerful visual design,
execution and maintenance of software and other processes.
OMG's middleware standards and profiles are based on the
Common Object Request Broker Architecture (CORBA)
and support a wide variety of industries. (Source: http://

www.omg.org/)

OOA (Object Oriented Analysis) constitutes the development
of software engineering requirements and specifications

for a system. These are expressed as an object model
(object oriented design) which is composed of a population of
interacting objects.

Object-oriented databases are based on the object model,
and use the same conceptual models as object-oriented
analysis and design.

Any design that incorporates objects, classes, and
inheritance. Contrast with object-based design and class-
based design.

A programming language that enables programmers to define
and use objects, classes, and inheritance; for example, C++,
Ada 95.

A library that enables CORBA obijects to locate and
communicate with one another. (Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

Online Certificate Status Protocol is a method for determining
the revocation status of an X.509 digital certificate using
means other than CRLs. Itis described in RFC 2560 and is
on the Internet standards track.

OCSP messages are encoded in ASN.1 and usually
communicated over HTTP. OCSP's request/response nature
leads to OCSP servers being termed as OCSP responders.

OSC is service that may be provided by the Certificate
Authority (CA). A relying party sends a request to the OSC
service with a certificate, the OSC service responds with a
digitally signed response that includes the date and time,
certificate identification, and the status of the certificate

about whose validity the relying party inquired. The possible
responses include "unknown" which may be the response to a
query regarding an expired certificate.

Note: This definition is derived from the DoD Class
3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Page 652

http://www.omg.org/
http://www.omg.org/
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Online Status Check OSCR
Responder

Ontology

Open Database Connectivity | ODBC

Open Standard

Organization for the OASIS
Advancement of Structured
Information Standards

Part 5: Developer Guidance

OSCR is the server that responds to a relying party's OSC
request.

An explicit specification of how to represent the objects
and concepts that exist in some area of interest and of

the relationships that pertain among them. (Source: DoD
8320.02-G, 12 April 2006, Guidance for Implementing Net-
Centric Data Sharing)

In computing, Open Database Connectivity (ODBC)
provides a standard software API method for using database
management systems (DBMS). The designers of ODBC
aimed to make it independent of programming languages,
database systems, and operating systems. (Source: http://
en.wikipedia.org/wiki/Odbc; 30 March 2007)

Open standards are publicly available specifications for
achieving a specific task. By allowing anyone to obtain and
implement the standard, they can increase compatibility
between various hardware and software components,
since anyone with the necessary technical know-how

and resources can build products that work together with
those of the other vendors that base their designs on the
standard (although patent holders may impose "reasonable
and non-discriminatory" royalty fees and other licensing
terms on implementers of the standard). Source: http://
en.wikipedia.org/wiki/Open_standard)

Note: NESI restricts the use of the term "standard"
to technologies approved by formalized committees
that are open to participation by all interested parties
and operate on a consensus basis.

A not-for-profit, international consortium that drives the
development, convergence, and adoption of e-business
standards. (Source: http://www.oasis-open.org/who/)

Page 653

http://www.dtic.mil/whs/directives/corres/pdf/832002g.pdf
http://www.dtic.mil/whs/directives/corres/pdf/832002g.pdf
http://en.wikipedia.org/wiki/Odbc
http://en.wikipedia.org/wiki/Odbc
http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Open_standard
http://www.oasis-open.org/who/

OS File Systems

OWL

Parser

Personalization

Personal Web Server PWS

Physical Model

Portability

Portable Object Adapter POA

Part 5: Developer Guidance

A file system that stores and retrieves data, acting as a data
tier. Advocates cite performance and simplicity, but the loss
of DBMS-inherent capabilities such as ad-hoc queries and
the ability to upgrade to faster machines is a deterrent. File-
system-based data tiers often result in proprietary solutions
that are hard to maintain and port.

See Web Ontology Language entry.

A module that reads in XML data from an input source and
breaks it into chunks so that your program knows when it

is working with a tag, an attribute, or element data. A non-
validating parser ensures that the XML data is well formed but
does not verify that it is valid. (Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

The ability for portal members to subscribe to specific types of
content and services. Users can customize the look and feel
of their environment.

A Web server program for personal computer users who
want to share Web pages and other files from their hard
drive. PWS is a scaled-down version of Microsoft's more
robust Web server, Internet Information Server (11S). PWS
can be used with a full-time Internet connection to serve Web
pages for a Web site with limited traffic. It can also be used
for testing a Web site offline or from a "staging" site before
putting it on a main Web site that is exposed to more traffic.

Translates the conceptual model to a particular RDBMS
implementation.

The ease with which a system or component can be
transferred from hardware or software environment to
another. (Source: IEEE Std 610.12-1990) The level of
software portability of any specific product depends on two
factors: the design of the product itself, and the characteristics
of the source and target execution environments. Software
products are rarely if ever 100% portable. Generally, the level
of portability depends on the target platform. Software that is
highly portable to one class of platform might be not portable
to other classes.

A CORBA standard for building server-side applications that
are portable across heterogeneous ORBs. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Page 654

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Portable Operating System POSIX
Interface for Computing
Environments

Portal

Portal Page

Portlet

Portlet Container

Portlet Specification JSR 168

Primary Key PK

Part 5: Developer Guidance

A Web portal is a Web site that provides a starting point,
gateway, or portal to other resources on the Internet or
an intranet. Intranet portals are also known as "enterprise
information portals” (EIP). Examples of existing portals
are Yahoo, Excite, Lycos, Altavista, Infoseek, and Hotbot.
(Source: http://en.wikipedia.org/wiki/web_portal)

A complete document rendered by a portal. (Source: http://
WWW.0asis-open.org/committees/download.php/3343/
oasis-200304-wsrp-specification-1.0.pdf)

A reusable Web component that displays relevant information
to portal users. Examples for portlets include email, weather,
discussion forums, and news. The purpose of the Web
Services for Remote Portlets (WSRP) interface is to
provide a Web services standard that allows for the "plug-n-
play" of portals, other intermediary Web applications that
aggregate content, and applications from disparate sources.
The portlet specification enables interoperability between
portlets and portals. This specification defines a set of APIs
for portal computing that addresses the areas of aggregation,
personalization, presentation, and security. (Source: http://
en.wikipedia.org/wiki/Portlets)

A portlet container provides a runtime environment for
portlets implemented according to the portlet API. In this
environment portlets can be instantiated, used, and finally
destroyed. The portlet container is not a standalone container
like the servlet container; instead it is implemented as a

thin layer on top of the servlet container and reuses the
functionality provided by the servlet container. (Source: http://
portals.apache.org/pluto/)

To enable interoperability between portlets and portals,

this specification defines a set of APIs for portal computing
that address the areas of aggregation, personalization,
presentation, and security. (Source: http://www.jcp.org/en/jsr/
detail?id=168)

An object that uniquely identifies a row within a table.

Page 655

http://en.wikipedia.org/wiki/web_portal
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://en.wikipedia.org/wiki/Portlets
http://en.wikipedia.org/wiki/Portlets
http://portals.apache.org/pluto/
http://portals.apache.org/pluto/
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168

Part 5: Developer Guidance

Private Key

Producer

Protocol

Proxy

Proxy Pattern

Public Key PK

Public Key Certificate

Public Key Cryptography

Public Key Enabling PK-Enabling

The private key is one of a pair of keys that are generated as
part of asymmetric key cryptography. The private key is kept
secret and the public key is public and can be shared openly
with others.

A Web service conforming to the WSRP specification.
(Source: http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

An agreed-upon format for transmitting data between two
devices. The protocol determines the type of error checking to
be used, data compression method, if any, how the sending
device will indicate that it has finished sending a message,
and how the receiving device will indicate that it has received
a message. (Source: http://www.webopedia.com/TERM/p/

protocol.html)

A server that sits between a client application, such as a
Web browser, and a real server. It intercepts all requests
to the real server to see if it can fulfill the requests itself. If
not, it forwards the request to the real server.Proxy servers
have two main purposes: improve performance and filter
requests. (Source: _http://www.webopedia.com/TERM/p/
proxy_server.html)

Provides a surrogate or placeholder for another object to
control access to it.

See Public Key Cryptography.

Used in client-certificate authentication to enable the server,
and optionally the client, to authenticate each other. The
public key certificate is the digital equivalent of a passport.
It is issued by a trusted organization, called a certificate
authority, and provides identification for the bearer. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

Public key cryptography, also known as asymmetric
cryptography, is a form of cryptography in which a user has
a pair of cryptographic keys - a public key and a private key.
The private key is kept secret, while the public key may be
widely distributed. The keys are related mathematically,

but the private key cannot be practically derived from the
public key. A message encrypted with the public key can be
decrypted only with the corresponding private key. (Source:
http://en.wikipedia.org/wiki/Public_key)

The incorporation of the use of certificates for security
services such as authentication, confidentiality, data integrity,
and nonrepudiation. PK-Enabling involves replacing existing
or creating new user authentication systems using certificates
instead of other technologies, such as userid and password
or Internet Protocol filtering; implementing public key
technology to digitally sign, in a legally enforceable manner,
transactions and documents; or using public key technology,

Page 656

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.webopedia.com/TERM/p/protocol.html
http://www.webopedia.com/TERM/p/protocol.html
http://www.webopedia.com/TERM/p/proxy_server.html
http://www.webopedia.com/TERM/p/proxy_server.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Public_key

Public Key Infrastructure

Publish/Subscribe Messaging
System

Quality of Service

PKI

QoS

Part 5: Developer Guidance

generally in conjunction with standard symmetric encryption
technology, to encrypt information at rest and/or in transit.
(Source: DaD Instruction 8520.2, Public Key Infrastructure
(PKI) and Public Key (PK) Enabling, 1 April 2004 [R1206])

Framework established to issue, maintain, and revoke

public key certificates accommodating a variety of security
technologies, including the use of software. (Source: CNSS
Instruction No. 4009, Revised May 2003, National Information
Assurance (IA) Glossary)

A messaging system in which clients address messages

to a specific node in a content hierarchy, called a topic.
Publishers and subscribers are generally anonymous

and can dynamically publish or subscribe to the content
hierarchy. The system takes care of distributing the messages
arriving from a node's multiple publishers to its multiple
subscribers. Messages are generally not persistent and

will only be received by subscribers who are listening at

the time the message is sent. A special case known as a
"durable subscription” allows subscribers to receive messages
sent while the subscribers are not active. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Data timeliness, accuracy, completeness, integrity, and ease
of use. Refers to the probability of the network meeting a
given traffic contract. In many cases is used informally to
refer to the probability of a packet passing between two
points in the network. (Source: http://en.wikipedia.org/wiki/
Quality_of service) -OR- A defined level of performance that
adapts to the environment in which it is operating. QoS may
be requested by the user of the information. The level of QoS
provided is based on the request, the available capabilities of
the provider, and the priority of the user.

Page 657

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Quality_of_service

Real-Time

Real-Time System

Refactoring

Reference Data Set

Referential Integrity

Registered Namespace

Relational Database RDB

Relational Database RDBMS
Management System

Part 5: Developer Guidance

An operation within a larger dynamic system is called a real-
time operation if the combined reaction- and operation-time

of a task is shorter than the maximum delay that is allowed,

in view of circumstances outside the operation. The task

must also occur before the system to be controlled becomes
unstable. A real-time operation is not necessarily fast, as slow
systems can allow slow real-time operations. This applies

for all types of dynamically changing systems. The polar
opposite of a real-time operation is a batch job with interactive
timesharing falling somewhere in-between the two extremes.
(Source: http://en.wikipedia.org/wiki/Real_time)

A system in which the correctness of system behavior
depends on both the logical correctness of the computation
and the time at which the result is produced. For a real-time
system, the system fails if its timing constraints are not met.
"Real time" is not necessarily synonymous with "fast." The
latency of the response might not be an issue, and it could be
on the order of seconds or minutes. But the bounded latency
that is sufficient to solve the problem at hand is guaranteed by
the system. "Bounded" means that the response is neither too
early nor too late. In real-time systems, early can be as bad
as late.

Refactoring is often used to describe modifying source code
without changing its external behavior, and is sometimes
informally referred to as "cleaning it up." Refactoring

is often practiced as part of the software development

cycle: developers alternate between adding new tests and
functionality and refactoring the code to improve its internal
consistency and clarity. Testing ensures that refactoring does
not change the behavior of the code.

The Reference Data Set Gallery [of the DoD Metadata
Registry and Clearinghouse] provides collections

of related data that represent a defined entity within a
community of interest. Examples of reference data sets
include country codes, U.S. state codes, and marital status
codes. (Soure: http://www.disa.mil/nces/development/
developer_doc_overview.html)

A feature provided by RDBMSs that prevents users or
applications from entering inconsistent data. Most RDBMSs
have various referential integrity rules that you can apply
when you create a relationship between two tables.

A namespace that has been registered and approved with a
namespace registration services. For the DoD, use the DoD
Metadata Registry.

A collection of data items organized as a set of formally-
described tables from which data can be accessed or
reassembled in many different ways without having to
reorganize the database tables.

A database management system (DBMS) that is based on

the relational model or that presents the data to the user as
relations. A collection of tables, each table consisting of a set

Page 658

http://en.wikipedia.org/wiki/Real_time
http://www.disa.mil/nces/development/developer_doc_overview.html
http://www.disa.mil/nces/development/developer_doc_overview.html

Relative Font Size

Remote Method Invocation RMI
Remote Procedure Call RPC
Resource Adaptor Archive RAR
Resource Definition RDF
Framework

Role-Based Access Control RBAC

Rollback

Sans Serif Font

SCA Operating Environment | OE

Part 5: Developer Guidance

of rows and columns, can satisfy this property. RDBMSs also
provide relational operators to manipulate the data in tabular
form. (Source: http://en.wikipedia.org/wiki/RDBMS)

Fonts that display according to the size of the surrounding
text. Some designers call them scalable fonts. Instead of
displaying a fixed pixel size, a relative font size displays as
a percentage of the surrounding elements. (Source: http://
www.netmechanic.com/news/vol5/design_no13.htm)

A technology that allows an object running in one Java virtual
machine to invoke methods on an object running in a different
Java virtual machine. (Source: http://java.sun.com/j2ee/1.4/
docs/glossary.html)

An alternative to sockets that abstracts the communication
interface to the level of a procedure call. The programmer
has the illusion of calling a local procedure, but in fact the
arguments of the call are packaged and sent to the remove
target of the cell. RPC systems encode arguments and return
values using an external data representation such as XDR.
RPC does not translate well into distributed object systems,
which require communication between program-level objects
in different address spaces. To match the semantics of object
invocation, distributed object systems require RMI. A local
surrogate (stub) object manages the invocation on a remote
object.

A J2EE component that implements the J2EE Connector
Architecture for a specific Enterprise Information System
(EIS). J2EE applications communicate with an EIS through
the resource adapter. You can deploy RARs on any J2EE
server. A RAR file may be independent or contained in an
EAR file.

An approach to restricting system access to authorized users.
It is a newer and alternative approach to discretionary access

control and mandatory access control. It assigns permissions

to specific operations with meaning in the organization, rather

than to low-level data objects. (Source: http://en.wikipedia.org/
wiki/RBAC)

The point in a transaction when all updates to any resources
involved in the transaction are reversed. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

A sans serif font is a font that has no serifs. Examples are
Arial, Century Gothic, and Helvetica. (Source: http://
web.mit.edu/abiword_v2.0.10/Tutorials/klw/glossary.html)

SCA Operating Environment: The SCA OE describes the
requirements of the operating system, middleware, and the
CF interfaces and operations.

Page 659

http://en.wikipedia.org/wiki/RDBMS
http://www.netmechanic.com/news/vol5/design_no13.htm
http://www.netmechanic.com/news/vol5/design_no13.htm
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/RBAC
http://en.wikipedia.org/wiki/RBAC
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://web.mit.edu/abiword_v2.0.10/Tutorials/klw/glossary.html
http://web.mit.edu/abiword_v2.0.10/Tutorials/klw/glossary.html

Schema

Secret Internet Protocol SIPRNet
Router Network

Secret Key

Secure Hash Algorithm SHA
Secure Sockets Layer SSL
Security Assertion Markup SAML
Language

Part 5: Developer Guidance

A diagrammatic representation, an outline, or a model. In
relation to data management, a schema can represent any
generic model or structure that deals with the organization,
format, structure, or relationship of data. Some examples of
schemas are (1) a database table and relational structure,
(2) adocument type definition (DTD), (3) a data structure
used to pass information between systems, and (4) an XML
schema document (XSD) that represents a data structure
and related information encoded as XML. Schemas typically
do not contain information specific to a particular instance of
data (Source: DoD 8320.02-G, 12 April 2006, Guidance for
Implementing Net-Centric Data Sharing)

DoD's largest interoperable command and control data
network, supporting the Global Command and Control
System (GCCS), the Defense Message System (DMS),
collaborative planning and numerous other classified
warfighter applications. Direct connection data rates range
from 56 kbps to 155 Mbps for the Unclassified but Sensitive
Internet Protocol Router Network (NIPRNet), and up to
45 Mbps for the SIPRNet. Remote dial-up services are also
available, ranging from 19.2 kbps on SIPRNet to 56 kbps
on NIPRNet. (Source: http://www.disa.mil/main/prodsol/
data.html)

The asymmetric key cryptography approach generates two
keys, a public key and a private key. The private key is often
referred to as the secret key.

The SHA (Secure Hash Algorithm) family is a set of

related cryptographic hash functions. In cryptography, a
cryptographic hash function is a hash function with certain
additional security properties to make it suitable for use as a
primitive in various information security applications, such as
authentication and message integrity. A hash function takes a
long string (or message) of any length as input and produces
a fixed length string as output, sometimes termed a message
digest or a digital fingerprint. (Source: http://en.wikipedia.org/
wiki/SHA#SHA-0_and_SHA-1)

A protocol for transmitting private documents via the Internet.
SSL uses a cryptographic system employing two keys to
encrypt data: a public key known to everyone and a private
or secret key known only to the recipient of the message.
(Source:http://www.webopedia.com/TERM/S/SSL.html)

An XML standard for exchanging authentication and
authorization data between security domains; that is, between
an identity provider and a service provider. SAML is a product
of the OASIS Security Services Technical Committee.
(Source:http://en.wikipedia.org/wiki/SAML)

Page 660

http://www.dtic.mil/whs/directives/corres/pdf/832002g.pdf
http://www.disa.mil/main/prodsol/data.html
http://www.disa.mil/main/prodsol/data.html
http://en.wikipedia.org/wiki/SHA#SHA-0_and_SHA-1
http://en.wikipedia.org/wiki/SHA#SHA-0_and_SHA-1
http://www.webopedia.com/TERM/S/SSL.html
http://en.wikipedia.org/wiki/SAML

Part 5: Developer Guidance

Semantics The implied meaning of data, the study or words and their
meanings.
Serialization Serialization is the process of writing a complex object

into a serial stream of data. When the data is successfully
transferred, the data can be deserialized back into a complex
object.

Note: The process of transferring data using
serialization and deserialization is called
marshalling.

Serif Font A serif is a feature of the letters in a given typeset. They
appear at the end of lines within the letters. An example would
be the letter T in Times New Roman - at the end of each
horizontal line is a tick that hangs down (that is the serif). Serif
fonts include Times New Roman, Bookman Oldstyle, and
Courier.

T,

T Serif
1165
Server A computer software application that carries out some task

(i.e., provides a service) on behalf of yet another piece of
software called a client.

Service A service is an autonomous encapsulation of some business
or mission functionality. The service concept includes the
notion of service providers and service consumers interacting
via well-defined reusable interfaces.

Note: See P1304: Service-Oriented Architecture
in Part 1 for additional information concerning
services including implementation characteristics.

Service-Oriented Architecture | SOA NESI describes SOA as an architectural style used to design,
develop, and deploy information technology (IT) systems
based on decomposing functionality into services with well-
defined interfaces.

Note: See P1304: Service-Oriented Architecture
in Part 1 for additional information.

Page 661

http://nesipublic.spawar.navy.mil/nesix/View/P1304
http://nesipublic.spawar.navy.mil/nesix/View/P1304

Part 5: Developer Guidance

Service Provider The person, organization, or automated asset that implements
and operates a service.

Service Registry Provides descriptive information about a service, enabling the
lookup and discovery of services.

Servlet A Java program that extends the functionality of a Web
server, generating dynamic content and interacting with
Web applications using a request-response paradigm.
(Source:http://java.sun.com/j2ee/1.4/docs/glossary.html)

Session An interaction between system entities of finite duration,
often involving a user, typified by the maintenance of
some state of the interaction for the duration of the
interaction. (Source:http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

Session Key A session key is an encryption and decryption key randomly
generated to ensure the security of a communications session
between a user and a computer or between two computers.
Session keys are sometimes called symmetric keys, because
the same key is used for both encryption and decryption.
Throughout each session, the key is transmitted with each
message and is encrypted with the recipient's public key.
Because much of their security relies upon the brevity of their
use, session keys are often changed frequently.

Simple Structured Data Simple Structured Data has an uncomplicated data structure.
All requisite metadata is provided and simple data types only
are used (e.g., integers, long integers, strings, and simple
lists.

Simple Unstructured Data Simple Unstructured Data has uncomplicated data structure
but not all requisite metadata is provided.

Single Sign-On SSO

Single Touch Point The portal becomes the delivery mechanism for all business
information services.

Smart Card A credit card-size device, normally for carrying and
use by personnel, that contains one or more integrated
circuits and also may employ one or more of the following
technologies: magnetic stripe, bar codes (linear and two-
dimensional), non-contact and radio frequency transmitters,
biometric information, encryption and authentication, or
photo identification. (Source: DoDD 8190.3, Smart Card
Technology, 31 August 2003, Page 2, Section 3.2)

SOAP SOAP Version 1.2 is a lightweight protocol intended for
exchanging structured information in a decentralized,
distributed environment. It uses XML technologies to
define an extensible messaging framework providing a
message construct that can be exchanged over a variety of
underlying protocols. The framework has been designed to be
independent of any particular programming model and other
implementation specific semantics. (Source: SOAP Version

Page 662

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.dtic.mil/whs/directives/corres/html/819003.htm

Software Communications SCA
Architecture

Software Component

Stored Procedure

Stovepipe System

Structured Query Language SQL

Structured Query Language SQL-92
1992

Part 5: Developer Guidance

1.2 Second Edition, http://www.w3.0rg/TR/soapl2-partl/
#intro)

Note: The World Wide Web Consortium (W3C)
changed the name of this protocol from Simple
Object Access Protocol 1.1 (SOAP) to SOAP
Version 1.2 in the current version.

An implementation-independent framework for the
development of software for an established hardware
platform, such as software defined radios.

A software component is a software system element offering
a predefined service and able to communicate with other
components. It is a unit of independent deployment and
versioning, encapsulated, multiple-use, non-context-specific
and composeable with other components.

Source: http://en.wikipedia.org/wiki/
Software_component#Software_component

A unit or module of code that executes in a database and
implement some bit of application logic or business rule. Often
written in proprietary language such as Oracle's PL/SQL or
Sybase's Transact-SQL.

A stovepipe system is a legacy system that is an assemblage
of inter-related elements that are so tightly bound together
that the individual elements cannot be differentiated,
upgraded or refactored. The stovepipe system must be
maintained until it can be entirely replaced by a new system.

Examples of stovepipe systems:
. Systems for which new hardware is no longer available
. Systems whose original source code has been lost

. Systems that were built using old or ad hoc engineering
methodologies for which support can no longer be found

The term is also used to describe a system that does not
interoperate with other systems, presuming instead that it is
the only extant system.

A stovepipe system is an example of an anti-pattern legacy
system and demonstrates software brittleness. (Source:
http://en.wikipedia.org/wiki/Stovepipe_system)

The standardized relational database language for defining
database objects and manipulating data. (Source:http://
java.sun.com/j2ee/1.4/docs/glossary.html)

The SQL-92 and SQL:1999 standards are very detailed
and specific. At the current time, no RDBMS vendors fully
support the entire standard. Vendors that claim they are

Page 663

http://www.w3.org/TR/soap12-part1/#intro
http://www.w3.org/TR/soap12-part1/#intro
http://en.wikipedia.org/wiki/Software_component#Software_component
http://en.wikipedia.org/wiki/Software_component#Software_component
http://en.wikipedia.org/wiki/Stovepipe_system
http://en.wikipedia.org/wiki/Stovepipe_system
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 5: Developer Guidance

SQL-92-compliant or SQL:1999-compliant are actually only
compliant to a certain level. The SQL-92 standard defines
the following levels, which also apply to SQL:1999: (1)
Notational; (2) Transitional level SQL92; (3) Intermediate
level SQL92; (4) .Full SQL92. (Source:http://dbs.uni-
leipzig.de/en/lokal/standards.pdf; http://developer.mimer.com/
documentation/html_82/Mimer_SQL_Reference_Manual/
Intro_SQL_Stds3.html)

Structured Query Language SQL-99 See SQL-92.
1999

Page 664

http://dbs.uni-leipzig.de/en/lokal/standards.pdf
http://dbs.uni-leipzig.de/en/lokal/standards.pdf
http://developer.mimer.com/documentation/html_82/Mimer_SQL_Reference_Manual/Intro_SQL_Stds3.html
http://developer.mimer.com/documentation/html_82/Mimer_SQL_Reference_Manual/Intro_SQL_Stds3.html
http://developer.mimer.com/documentation/html_82/Mimer_SQL_Reference_Manual/Intro_SQL_Stds3.html

Part 5: Developer Guidance

Style Sheet Style sheets describe how documents are presented on
screens, in print, or perhaps how they are pronounced.
(Source: http://www.w3.0rg/Style)

Surrogate Key A surrogate key is a primary key that has been explicitly
created and has no relationship with the naturally occurring
data found within a table.

P Swurrogate Keys
Stu. ID Mame Address Phore
Fie]] Tolm 00 Ash o, T L T
Public Howmatown, USA
124 Tane Diee | A0 EBu Ave, F0-S55T212 |
Hometown, TT5A
Courses:
Stu. ID Conurve # Narme
14 EIm Intro B
1258 Cod [11] Trtro Chem
TZ4 FIOO Tudra Phy
T3 EIO0 Enghsh1
T Coj {11 Tro Chem
i1} FIOT Triro Fhy

Ifthe student name “Jane Dos” changes, only
orie occumence of the name must be changed.

117

See Natural Key and Primary Key.

Symmetric Key Algorithm Encryption algorithm where the same key is used for both
encrypting and decrypting a message.

System Two or more interrelated pieces of equipment (or sets)
arranged in a package to perform an operational function or to
satisfy a requirement. (Source: Defense Acquisition Glossary
of Terms, Jan 2001)

System Component A basic part of a system. System components may be
personnel, hardware, software, facilities, data, material,
services, and/or techniques that satisfy one or more
requirements in the lowest levels of the functional
architecture. System components may be subsystems and/or
configuration items.

Note: See component.

Taxonomy The science of categorization, or classification, of things
based on a predetermined system. In reference to Web sites
and portals, a site's taxonomy is the way it organizes its data
into categories and subcategories, sometimes displayed in
a site map. (Source: http://www.webopedia.com/TERM/t/

taxonomy.html)

Taxonomy Gallery The Taxonomy Gallery [of the DoD Metadata Registry and
Clearinghouse] provides XML-based taxonomy files that

Page 665

http://www.w3.org/Style/
http://www.webopedia.com/TERM/t/taxonomy.html
http://www.webopedia.com/TERM/t/taxonomy.html

Part 5: Developer Guidance

describe one or more nodes in a hierarchical classification of
items, and their relationships to other nodes. The taxonomy
files registered with the Taxonomy Gallery are organized by
governance hamespace. (Source: http://www.disa.mil/nces/
development/developer_doc_overview.html)

Tenet Net-centric design precept.

Page 666

http://www.disa.mil/nces/development/developer_doc_overview.html
http://www.disa.mil/nces/development/developer_doc_overview.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://www.webopedia.com/TERM/T/TLS.html

Trigger

Triple Data Encryption TDEA
Algorithm

Trust Point

Tunneling

Unclassified but Sensitive NIPRNet
Internet Protocol Router
Network

Unicode

Unified Class Library

Unified Modeling Language UML

Part 5: Developer Guidance

In a DBMS, a trigger is a SQL procedure that initiates

(fires) an action when an event (INSERT, DELETE, or
UPDATE) occurs. Since triggers are event-driven specialized
procedures, the DBMS stores and manages them. A trigger
cannot be called or executed; the DBMS automatically fires
the trigger as a result of a data modification to the associated
table. Triggers maintain the referential integrity of data by
changing the data in a systematic fashion.

An encryption algorithm whose key consists of three DES
(Data Encryption Standard) keys, which is also referred

to as a key bundle. A DES key consists of 64 binary digits
("0"s or "1"s) of which 56 bits are randomly generated and
used directly by the algorithm. (The other 8 bits, which

are not used by the algorithm, may be used for error
detection.) Each TDEA encryption/decryption operation (as
specified in ANSI X9.52) is a compound operation of DES
encryption and decryption operations. Let EK(I) and DK(l)
represent the DES encryption and decryption of | using
DES key K respectively. (Source: http://www.atis.org/tg2k/
_triple_data_encryption_algorithm.html)

A trust point is a Certificate Authority (CA) that is the root of
all trust for all CAs in a CA hierarchy.

Transporting IPv6 traffic through IPv4 networks by
encapsulating IPv6 packet in IPv4 and vice-versa.

NIPRNet provides seamless interoperability for unclassified
combat support applications, as well as controlled access to
the Internet. Direct connection data rates range from 56Kbps
to 622Mbps. Remote dial-up services are available up to
56Kbps. (Source: http://www.disa.mil/main/prodsol/data.html)

A standard defined by the Unicode Consortium. Unicode

uses a 16-bit code page that maps digits to characters in
languages around the world. Because 16 bits covers 32,768
codes, Unicode is large enough to include all the world's
languages, with the exception of ideographic languages that
have a different character for every concept, such as Chinese.
For more information, see http://www.unicode.org/. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

With the introduction of .NET, Microsoft redesigned the
access to common system components and services such as
XML Web services, Enterprise Services, ADO.NET, and XML
by creating a single object-oriented library. All the Microsoft
Visual .NET languages (Visual Basic, C++, J#, C#, etc.)

have access to this library. To make access to these objects
available within the various languages, Microsoft provided
infrastructure such as hierarchical namespaces, structures,
types, and common objects like collections.

In the field of software engineering, the Unified Modeling

Language (UML) is a standardized specification language
for object modeling. UML is a general-purpose modeling

Page 667

http://www.atis.org/tg2k/_triple_data_encryption_algorithm.html
http://www.atis.org/tg2k/_triple_data_encryption_algorithm.html
http://www.disa.mil/main/prodsol/data.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Part 5: Developer Guidance

language that includes a graphical notation used to create
an abstract model of a system, referred to as a UML model.
UML is officially defined at the Object Management Group
(OMG) by the UML metamodel, a Meta-Object Facility
metamodel (MOF). (Source: http://en.wikipedia.org/wiki/
Unified_Modeling_Language; 30 March 2007)

Uniform Resource Identifier URI An encoded address that represents any Web resource,
such as an HTML document, image, video clip, or program.
As opposed to a URL or a URN, which are concrete
entities, a URI is an abstract superclass. (Source: http://
publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/
com.ibm.wsinted.glossary.doc/topics/glossary.html)

Uniform Resource Locator URL A sequence of characters that represents information
resources on a computer or in a network such as the
Internet. This sequence of characters includes (1) the
abbreviated name of the protocol used to access the
information resource and (2) the information used by the
protocol to locate the information resource.(Source: http://
publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/
com.ibm.wsinted.glossary.doc/topics/glossary.html)

Uniform Resource Name URN A name that uniquely identifies a Web service to a client.
(Source: http://publib.boulder.ibm.com/infocenter/adiehelp/
index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/

glossary.html)

UNIQUE Key Integrity A UNI QUE key integrity constraint requires that every value

Constraint in a column or set of columns (key) be unique; that is, no two
rows of a table have duplicate values in a specified column or
set of columns. (Source: http://www.|c.leidenuniv.nl/awcourse/
oracle/server.920/a96524/c22integ.htm)

Universal Description, uDDI An industry initiative to create a platform-independent, open

Discovery, and Integration framework for describing services, discovering businesses,
and integrating business services using the Internet, as well
as a registry. It is being developed by a vendor consortium.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

Use-Case A sequence of actions, performed by a system, that yields a
result of value to a user. A set of actions, including variants,
that a system performs that yields an observable result of
value to a particular actor.

User Datagram Protocol UDP A connectionless protocol that, like TCP, runs on top of
Internet Protocol (IP) networks. Unlike Transmission
Control Protocol/Internet Protocol (TCP/IP), UDP/IP
provides very few error recovery services, offering instead
a direct way to send and receive datagrams over an IP
network. It's used primarily for broadcasting messages over
a network. (Source: http://www.webopedia.com/TERM/U/
User_Datagram_Protocol.html)

Page 668

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96524/c22integ.htm
http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96524/c22integ.htm
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.webopedia.com/TERM/U/User_Datagram_Protocol.html
http://www.webopedia.com/TERM/U/User_Datagram_Protocol.html

Valid

VBScript

Vendor

Very High Speed Integrated VHSIC
Circuit

VHDL Component
VHSIC Hardware Description | VHDL
Language

VoiceXML VXML

Web Application

Web Application Archive WAR

Part 5: Developer Guidance

A valid XML document has data that conforms to a particular
set of user-defined content rules, or XML Schemas, that
describe correct data values and locations. For example,

if an element in a document is required to contain text that
can be interpreted as being an integer numeric value, and it
instead has the text hello, is empty, or has other elements in
its content, then the document is not valid. (Source: adapted
from http://en.wikipedia.org/wiki/XML; 9/11/2006)

A programming language developed by Microsoft that is
similar to JavaScript. It is used to embed code into HTML
pages. It is actually a subset of Microsoft's Visual Basic.

Any person, organization, or automated asset that interfaces
with the information environment as a service consumer or
service provider.

Specific type of digital logic circuit.

Special piece of conventional code that allows the
construction of hierarchical circuit designs.

Commonly used design-entry language in the electronic
design automation of digital circuits.

VoiceXML (VXML) is the W3C standard XML format for
specifying interactive voice dialogues between a human and
a computer. It is fully analogous to HTML, and brings the
same advantages of Web application development and
deployment to voice applications that HTML brings to visual
applications. Just as HTML documents are interpreted by a
visual web browser, VoiceXML documents are interpreted
by a voice browser. A common architecture is to deploy
banks of voice browsers attached to the public switched
telephone network (PSTN) so that users can simply pick up a
phone to interact with voice applications. VoiceXML has tags
that instruct the voice browser to provide speech synthesis,
automatic speech recognition, dialog management, and
soundfile playback.

A collection of components that can be bundled together and
run in multiple containers from multiple vendors. -OR- An
application written for the Internet, including those built with
Java technologies such as Java Server Pages and servlets,
and those built with non-Java technologies such as CGI and
Perl. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

A JAR archive that contains a Web module. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Page 669

http://en.wikipedia.org/wiki/XML
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

Web Browser

Web Container

Web Module

Web Ontology Language

OWL

Part 5: Developer Guidance

A client program that initiates requests to a Web server and
displays the information that the server returns. (Source:
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?
topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html)

A container that implements the Web-component contract

of the J2EE architecture. This contract specifies a runtime
environment for Web components that includes security,
concurrency, life-cycle management, transaction, deployment,
and other services. A Web container provides the same
services as a JSP container as well as a federated view of the
J2EE platform APIs. A Web container is provided by a Web
or J2EE server. (Source: http://java.sun.com/j2ee/1.4/docs/

glossary.html)

A deployable unit that consists of one or more Web
components, other resources, and a Web application
deployment descriptor. The Web module is contained

in a hierarchy of directories and files in a standard Web
application format. (Source: http://java.sun.com/j2ee/1.4/docs/

glossary.html)

A markup language for publishing and sharing data using
ontologies on the Internet. (Source: http://en.wikipedia.org/
wiki/Web_Ontology_Language)

Page 670

http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Web_Ontology_Language
http://en.wikipedia.org/wiki/Web_Ontology_Language

Web Page

Web Server

Web Service

Web Services Description WSDL
Language

Web Services for Interactive WSIA
Applications

Web Services for Remote WSRP
Portlets

Part 5: Developer Guidance

A document created with HTML (HyperText Markup
Language) that is part of a group of hypertext documents or
resources available on the World Wide Web. Collectively,
these documents and resources form what is known as

a Web site. You can read HTML documents that reside
somewhere on the Internet or on your local hard drive with
software called a Web browser. Web pages can contain
hypertext links to other places within the same document, to
other documents at the same Web site, or to documents at
other Web sites.

Software that provides services to access the Internet, an
intranet, or an extranet. A Web server hosts Web sites,
provides support for HTTP and other protocols, and executes
server-side programs (such as CGI scripts or servlets) that
perform certain functions. In the J2EE architecture, a Web
server provides services to a Web container. For example,
a Web container typically relies on a Web server to provide
HTTP message handling. The J2EE architecture assumes
that a Web container is hosted by a Web server from the
same vendor, so it does not specify the contract between
these two entities. A Web server can host one or more Web
containers. (Source: http://java.sun.com/j2ee/1.4/docs/

glossary.html)

A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network.
It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.
(Source: http://lwww.w3.0org/TR/ws-gloss/)

WSDL is an XML format for describing network services as
a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The
operations and messages are described abstractly, and then
bound to a concrete network protocol and message format to
define an endpoint. (Source: W3C Note on WSDL 1.1 of 15
March 2001 http://www.w3.0org/TR/wsdl)

The WSRP specification defines a Web service interface

for interacting with interactive presentation-oriented Web
services. It has been produced through the joint efforts

of the Web Services for Interactive Applications (WSIA)

and Web Services for Remote Portals (WSRP) OASIS
Technical Committees. Scenarios that motivate WSRP/
WSIA functionality include (1) portal servers providing
portlets as presentation-oriented Web services that can be
used by aggregation engines; (2) portal servers consuming
presentation-oriented Web services provided by portal or non-
portal content providers and integrating them into a portal
framework. (Source: http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

Page 671

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf

Part 5: Developer Guidance

Web Services Interoperability | WS-I WS-I is an open industry organization chartered to promote

Organization Web services interoperability across platforms, operating
systems and programming languages. The organization's
diverse community of Web services leaders helps customers
to develop interoperable Web services by providing guidance,
recommended practices and supporting resources. (Source:
http://www.ws-i.org/about/Default.aspx)

Web Site A Web site, website, or WWW site (often shortened to just
"site") is a collection of Web pages (i.e., HTML/XHTML
documents accessible via HTTP on the Internet). All publicly
accessible Web sites in existence comprise the World Wide
Web. The pages of a Web site are accessed from a common
root URL, the homepage, and usually reside on the same
physical server. The URLs of the pages organize them into a
hierarchy, although the hyperlinks between them control how
the reader perceives the overall structure and how the traffic
flows between the different parts of the site. (Source: http://
en.wikipedia.org/wiki/web_site)

Well-Formed A textual object is a well-formed XML document if:

1. Taken as a whole, it matches the production labeled
document.

2. It meets all the well-formedness constraints given in this
specification.

3. Each of the parsed entities which is referenced directly
or indirectly within the document is well-formed.

(Source: http://lwww.w3.0org/TR/REC-xml/#dt-wellformed)

Wireless Application Protocol | WAP WAP is an open international standard for applications that
use wireless communication, such as Internet access from
a mobile phone. WAP provides services equivalent to a Web
browser with some mobile-specific additions. It is specifically
designed to address the limitations of very small portable
devices. During its first years of existence WAP suffered from
considerable negative media attention and has been criticised
heavily for its design choices and limitations. (Source: http://
en.wikipedia.org/wiki/WAP)

Wireless Markup Language WML WML is the primary content format for devices that implement
the WAP (Wireless Application Protocol) specification
based on XML, such as mobile phones. (Source: http://
en.wikipedia.org/wiki/Wireless _Markup_Language)

Page 672

http://www.ws-i.org/about/Default.aspx
http://en.wikipedia.org/wiki/web_site
http://en.wikipedia.org/wiki/web_site
http://www.w3.org/TR/REC-xml/#dt-wellformed
http://en.wikipedia.org/wiki/WAP
http://en.wikipedia.org/wiki/WAP
http://en.wikipedia.org/wiki/Wireless_Markup_Language
http://en.wikipedia.org/wiki/Wireless_Markup_Language

Wire Protocol

Wisdom

World Wide Web

World Wide Web Consortium

WWW

w3C

Part 5: Developer Guidance

In a network, it is the mechanism for transmitting data
from point a. to point b. It often refers to a distributed
object protocol such as , or RMI, which is software only
and which invokes the running of programs on remote
servers. (Source: http://www.techweb.com/encyclopedia/
defineterm.jhtml?term=wire+protocol)

Knowledge with information so thoroughly assimilated as to
have produced sagacity, judgment, and insight. The ability to
use knowledge for a purpose.

The World Wide Web ("WWW," or simply "Web") is an
information space in which items of interest, referred to as
resources, are identified by global identifiers called Uniform
Resource Identifiers (URI). The term is often mistakenly
used as a synonym for the Internet, but the web is actually
a service that operates over the Internet. (Source: http://
en.wikipedia.org/wiki/World_Wide_web)

The World Wide Web Consortium (W3C) is an international
consortium where Member organizations, a full-time staff, and
the public work together to develop Web standards. W3C's
mission is to lead the World Wide Web to its full potential by
developing protocols and guidelines that ensure long-term
growth for the Web. (Source: http://www.w3.0rg/Consortium/)

Page 673

http://www.techweb.com/encyclopedia/defineterm.jhtml?term=wire+protocol
http://www.techweb.com/encyclopedia/defineterm.jhtml?term=wire+protocol
http://en.wikipedia.org/wiki/World_Wide_web
http://en.wikipedia.org/wiki/World_Wide_web
http://www.w3.org/Consortium/

Part 5: Developer Guidance

XML Attribute An XML structural construct. A name-value pair, separated
by an equals sign, included inside a tagged element that
modifies certain features of the element. All attribute values,
including things like size and width, are in fact text strings
and not numbers. For XML, all values must be enclosed
in quotation marks. Attributes can be declared for an XML
element type using an attribute list declaration. (Source: http://
msdn2.microsoft.com/en-us/library/ms256452.aspx)

XML Document A document object that is well-formed, according to the
XML recommendation, and that might (or might not) be valid.
The XML document has a logical structure (composed of
declarations, elements, comments, character references, and
processing instructions) and a physical structure (composed
of entities, starting with the root, or document entity). (Source:
http://msdn2.microsoft.com/en-us/library/ms256452.aspx)

XML Element An XML structural construct. An XML element consists of a
start tag, an end tag, and the information between the tags,
which is often referred to as the contents. Each element has
a type, identified by name, sometimes called its "generic
identifier" (Gl), and may have a set of attribute specifications.
Each attribute specification has a name and a value. An
instance of an element is declared using <element> tags.
Elements used in an XML file are described by a DTD or
schema, either of which can provide a description of the
structure of the data. (Source: http://msdn2.microsoft.com/en-
us/library/ms256452.aspx)

XML Gallery The XML Gallery [of the DoD Metadata Registry and
Clearinghouse] contains information resources such
as submission packages, elements, attributes, and
schemas that have been registered by DOD software
developers. These information resources use XML, a
platform and vendor independent format for exchanging
data, to handle data, data structures, and data descriptions
(metadata). (Source: http://www.disa.mil/nces/development/
developer_doc_overview.html)

XML Information Resources Document Type Definition (DTD) or XML Schema Documents
(XSD) files.
XML Instance Document An XML document defined by an XML Schema but is

populated with the data, not the definition of the data.

XML Path Language XPath The result of an effort to provide a common syntax
and semantics for functionality shared between XSL
Transformations (XSLT) and XML Pointer Language
(XPointer) . The primary purpose of XPath is to address
parts of an XML document. It also provides basic facilities for
manipulation of strings, numbers, and Booleans. XPath uses
a compact, non-XML syntax to facilitate use of XPath within
URIs and XML attribute values. XPath gets its name from its
use of a path notation as used in URLSs for navigating through
the hierarchical structure of an XML document. (Source:
http://msdn2.microsoft.com/en-us/library/ms256452.aspx)

Page 674

http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://www.disa.mil/nces/development/developer_doc_overview.html
http://www.disa.mil/nces/development/developer_doc_overview.html
http://msdn2.microsoft.com/en-us/library/ms256452.aspx

Part 5: Developer Guidance

XML Process Definition XPDL Is the language proposed by the Workflow Management

Language Coalition (WfMC) to interchange process definitions between
different workflow products. To goal of XPDL is to provide a
Lingua Franca for the workflow domain allowing for the import
and export process definitions between a variety of tools
ranging from workflow management systems to modeling and
simulation tools.

XML Schema A database-inspired method for specifying constraints on
documents using an XML-based language. Schemas address
deficiencies in DTDs, such as the inability to constrain the
kinds of data that can occur in a particular field. Because
schemas are founded on XML, they are hierarchical. Thus
it is easier to create an unambiguous specification, and it is
possible to determine the scope over which a comment is
meant to apply. (Source: http://java.sun.com/j2ee/1.4/docs/

glossary.html)

XML Schema Definition XSD A language proposed by the W3C XML Schema Working
Group for use in defining schemas. Schemas are useful for
enforcing structure and/or constraining the types of data
that can be used validly within other XML documents. XML
Schema Definition refers to the fully specified and currently
recommended standard for use in authoring XML schemas.
Because the XSD specification was only recently finalized,
support for it was only made available with the release of
MSXML 4.0. It carries out the same basic tasks as DTD,
but with more power and flexibility. Unlike DTD, which
requires its own language and syntax, XSD uses XML syntax
for its language. XSD closely resembles and extends the
capabilities of XDR. Unlike XDR, which was implemented and
made available by Microsoft in MSXML 2.0 and later releases,
the W3C now recommends the use of XSD as a standard for
defining XML schemas. (Source: http://msdn2.microsoft.com/
en-us/library/ms256452.aspx)

XSL Transformations XSLT A language to express the transformation of XML documents
into other XML documents. (Source: W3C Glossary)

Page 675

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://www.w3.org/2003/glossary/keyword/All/?keywords=XSL%20transformation%20%28XSLT%29

R1001

R1002

R1003

R1004

R1007

R1008

R1009

R1010

R1011

R1012

R1013

R1014

R1015

R1016

R1017

R1018

R1019

R1021

R1022

R1023

R1024

Part 5: Developer Guidance

References

DOM # a Whatis.com definition - http://whatis.techtarget.com/
definition/0,,sid9_gci213910,00.html.

SOAP Version 1.2 is available at http://www.w3.0org/TR/soapl12/.

Web Service Definition Language (WSDL) - http://www.w3.org/TR/wsdl

XSD - a Whatis.com definition - http://searchwebservices.techtarget.com/sDefinition/0%2c
%2csid26_gci831325%2c00.html

XSL - definition of XSL in Encyclopedia - http://encyclopedia.laborlawtalk.com/XSL

Web Services Security Specification, March 2004, (http://www.oasis-open.org/specs/
index.php)

An Introduction to the Web Services Architecture and Its Specifications, October 2004,
(http://msdn.microsoft.com/webservices)

XML (http://en.wikipedia.org/wiki/Xml)

ActiveX Control definition - http://isp.webopedia.com/TERM/A/ActiveX_control.html

Component Object Model definition - http://isp.webopedia.com/TERM/C/
Component_Object_Model.html

JScript definition - http://isp.webopedia.com/TERM/J/JScript.html

IIS - definition of IIS in Encyclopedia - http://encyclopedia.laborlawtalk.com/IIS

Personal Web Server - a Whatis.com definition - http://searchwebservices.techtarget.com/
sDefinition/0,,sid26_gci296469,00.html

HTML - a Whatis.com definition - http://searchwebservices.techtarget.com/
sDefinition/0,,sid26 _gci212286,00.html

VBScript definition from The Glossary of Internet Terms - http://
www.strategicwebventures.com/definitions/Glossary/VBScript/

HTML - a Whatis.com definition - http://searchwebservices.techtarget.com/
sDefinition/0,,sid26_gci212286,00.html

What is JSP? - http://www.webopedia.com/TERM/J/JSP.html

ANT - http://ant.apache.org/

Java EE - http://java.sun.com/javaee

For answers to frequently asked questions about cascading style sheets, see http://
www.blooberry.com/indexdot/css/topics/stylefaq.htm

Don't Make Me Think by Steve Krug (ISBN 0-7897-2310-7)

Page 676

http://whatis.techtarget.com/definition/0,,sid9_gci213910,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci213910,00.html
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/wsdl
http://searchwebservices.techtarget.com/sDefinition/0%2c%2csid26_gci831325%2c00.html
http://searchwebservices.techtarget.com/sDefinition/0%2c%2csid26_gci831325%2c00.html
http://encyclopedia.laborlawtalk.com/XSL
http://www.oasis-open.org/specs/index.php
http://www.oasis-open.org/specs/index.php
http://msdn.microsoft.com/webservices
http://en.wikipedia.org/wiki/Xml
http://isp.webopedia.com/TERM/A/ActiveX_control.html
http://isp.webopedia.com/TERM/C/Component_Object_Model.html
http://isp.webopedia.com/TERM/C/Component_Object_Model.html
http://isp.webopedia.com/TERM/J/JScript.html
http://encyclopedia.laborlawtalk.com/IIS
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci296469,00.html
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci296469,00.html
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci212286,00.html
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci212286,00.html
http://www.strategicwebventures.com/definitions/Glossary/VBScript/
http://www.strategicwebventures.com/definitions/Glossary/VBScript/
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci212286,00.html
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci212286,00.html
http://www.webopedia.com/TERM/J/JSP.html
http://ant.apache.org/
http://java.sun.com/javaee
http://www.blooberry.com/indexdot/css/topics/stylefaq.htm
http://www.blooberry.com/indexdot/css/topics/stylefaq.htm

R1025

R1026

R1027

R1031

R1032

R1033

R1034

R1035

R1036

R1037

R1038

R1039

R1040

R1041

R1042

R1043

R1044

R1045

R1046

R1047

R1048

R1049

R1050

R1051

R1052

R1053

Part 5: Developer Guidance
Creating Killer Interactive Web Sites by Adjacency (ISBN 1-56830-373-4)

Designing Web Usability by Jakob Nielsen (ISBN 1-56205-810-X)

OMG - http://www.omg.org/gettingstarted/gettingstartedindex.htm

Adapter pattern - http://c2.com/cgi/wiki?AdapterPattern

Design patterns: Proxy - http://www.dofactory.com/Patterns/PatternProxy.aspx

Facade pattern - http://c2.com/cgi/wiki?FacadePattern

Java EE - http://java.sun.com/javaee/

EJB - http://java.sun.com/products/ejb/

Jar - http://java.sun.com/developer/Books/javaprogramming/JAR/

.war - http://accessl.sun.com/techarticles/simple.WAR.html

.ear - http://java.sun.com/J2EE/tutorial/1_3-fcs/doc/Overview4.html

.rar - http://java.sun.com/j2ee/tutorial/l_3-fcs/doc/Connector2.html

JavaBeans definition - http://isp.webopedia.com/TERM/J/JavaBeans.html

Model-view-controller - a Whatis.com definition - http://whatis.techtarget.com/
definition/0,,sid9 _gci214607,00.html

Java Servlets definition - http://www.fromallangles.com/glossary/web-hosting/terms/java-
servlets.htm

Java Naming and Directory Interface - http://java.sun.com/products/jndi/

Erdogan, Levent. "Java Message Service (JMS) for J2EE." New Riders Publishing, August
14, 2002.

See the Microsoft MSDN document .NET Compact Framework for detailed comparisons
between the .NET Compact Framework and the .NET Framework.

"The Semantic Web," Michael C, Daconata, Leo J. Obrst, Kevin T. Smith; Wiley Publishing
Inc., 2003

http://members.optusnet.com.au/~webindexing/Webbook2Ed/glossary.htm

http://www.w3.0rg/TR/2004/REC-owl-features-20040210/

http://www.w3.0rg/TR/2002/NOTE-wscl10-20020314/

Wikipedia

DoD Meta Data Registry for XSLT samples. [http://diides.ncr.disa.mil/mdregHomePage/

mdregHome.portal]

XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16 November 1999
[http://www.w3.0rg/TR/xslt]

XSLT 2.0 (W3C Working Draft, 5 November 2004) [http://www.w3.0rg/TR/xslIt20]
Page 677

http://www.omg.org/gettingstarted/gettingstartedindex.htm
http://c2.com/cgi/wiki?AdapterPattern
http://www.dofactory.com/Patterns/PatternProxy.aspx
http://c2.com/cgi/wiki?FacadePattern
http://java.sun.com/javaee/
http://java.sun.com/products/ejb/
http://java.sun.com/developer/Books/javaprogramming/JAR/
http://access1.sun.com/techarticles/simple.WAR.html
http://java.sun.com/J2EE/tutorial/1_3-fcs/doc/Overview4.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Connector2.html
http://isp.webopedia.com/TERM/J/JavaBeans.html
http://whatis.techtarget.com/definition/0,,sid9_gci214607,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci214607,00.html
http://www.fromallangles.com/glossary/web-hosting/terms/java-servlets.htm
http://www.fromallangles.com/glossary/web-hosting/terms/java-servlets.htm
http://java.sun.com/products/jndi/
http://msdn.microsoft.com/smartclient/understanding/netcf/
http://members.optusnet.com.au/~webindexing/Webbook2Ed/glossary.htm
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/
http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal
http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20

R1054

R1055

R1056

R1058

R1062

R1069

R1070

R1071

R1072

R1073

R1077

R1078

R1079

R1080

R1081

R1091

R1092

R1093

R1094

R1095

R1097

Part 5: Developer Guidance
XSL Transformations (XSLT) Version 2.0

XSL (Extensible Stylesheet Language) 1.0, presentation rules to transform a document.
[See http://www.w3.org/Style/XSL and http://www.w3.0rg/TR/xsl]

The Extensible Stylesheet Language Family http://www.w3.0rg/Style/XSL

CSS (Cascading Style Sheets) versions 1 (CSS1) and 2 (CSS2)
[See http://www.w3.0rg/Style/CSS, http://www.w3.0rg/TR/REC-CSS1, http://www.w3.0org/
TR/REC-CSS2]

Won Kim. Introduction to Object-Oriented Databases. Computer Systems. MIT Press,
Cambridge, MA, 1990.

Native XML database vendors: http://www.rpbourret.com/xml/
XMLDatabaseProds.htm#native

C2IEDM data model specifications: http://www.mip-site.org/

Various methodologies, such as refactoring, support the determination of interfaces.
Refactoring generally applies to the entire software implementation, but is especially
helpful in properly flushing out interfaces.

There are other approaches defined through the pattern community: http://hillside.net/
patterns/.

See chapter 3 of Java Design: Building Better Apps &

AWT - http://java.sun.com/products/jdk/awt/

Swing - http://java.sun.com/products/jfc/

Thick client - http://www.jargonsoft.com/m2/tech/JargonWhitePaper.html

OASIS # a Whatis.com definition - http://searchvb.techtarget.com/
gDefinition/0%2c294236%2csid8 gci527425%2c00.html

What is UDDI? - http://www.webopedia.com/TERM/U/UDDI.html

"Web Portal Design Guide 1.1 July 2006," Space and Naval Warfare Systems Center San
Diego

For information on WSRP access specifications, see http://www-106.ibm.com/
developerworks/webservices/library/ws-wsrp/

For information on JSR-168 access specifications, see http://www.jcp.org/aboutJava/
communityprocess/final/jsr168/

For information on portlets, JSR-168, and WSRP access, see http://
www.portletsfactory.com/resources/portlets-jsr168-wsrp-portals-books.html

The Navy Enterprise Application Development Guide (NEADG) provides developer's
guidance for the Task Force Web (TFW) Navy Enterprise Portal (NEP).

The Air Force Portal is built upon the BroadVision portal (http://www.broadvision.com/). For
specifics on this portal, refer to http://www.gcss-af.com/.

Page 678

http://www.w3.org/TR/xslt20
http://www.w3.org/Style/XSL
http://www.w3.org/TR/xsl
http://www.w3.org/Style/CSS
http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.rpbourret.com/xml/XMLDatabaseProds.htm#native
http://www.rpbourret.com/xml/XMLDatabaseProds.htm#native
http://www.mip-site.org/
http://hillside.net/patterns/
http://hillside.net/patterns/
http://java.sun.com/products/jdk/awt/
http://java.sun.com/products/jfc/
http://www.jargonsoft.com/m2/tech/JargonWhitePaper.html
http://searchvb.techtarget.com/gDefinition/0%2c294236%2csid8_gci527425%2c00.html
http://searchvb.techtarget.com/gDefinition/0%2c294236%2csid8_gci527425%2c00.html
http://www.webopedia.com/TERM/U/UDDI.html
https://gesportal.dod.mil/sites/necc/architecture/Shared%20Documents/Architecture%20Guidance/Web%20Portal%20Spec%20v11%20Final.doc
http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/
http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/
http://www.jcp.org/aboutJava/communityprocess/final/jsr168/
http://www.jcp.org/aboutJava/communityprocess/final/jsr168/
http://www.portletsfactory.com/resources/portlets-jsr168-wsrp-portals-books.html
http://www.portletsfactory.com/resources/portlets-jsr168-wsrp-portals-books.html
http://www.broadvision.com/
http://www.gcss-af.com/

R1098

R1101

R1102

R1103

R1104

R1108

R1109

R1110

R1111

R1112

R1113

R1114

R1115

R1116

R1117

R1118

R1119

R1120

R1121

R1122

R1123

R1124

R1125

R1126

R1127

R1128

Part 5: Developer Guidance

Other Air Force portal initiatives are based on the Plumtree portal (http://
www.plumtree.com/).

Adapter pattern - http://c2.com/cgi/wiki?AdapterPattern

Design patterns: Proxy - http://www.dofactory.com/Patterns/PatternProxy.aspx

Facade pattern - http://c2.com/cgi/wiki?FacadePattern

For information on .NET vs. J2EE Web services, see http://www.webservicesarchitect.com/
content/articles/hanson01.asp.

Software Communications Architecture

Minimum CORBA v1.0

OMG Lightweight Log Service

Software-based Communications DTF

Software Communications Architecture (Wikipedia)

"Circuit Design with VHDL" by Volnei A. Pedroni, MIT Press, 2004. ISBN: 0-262-16224-5

"VHDL Coding Styles and Methodologies” (2nd Edition) by Ben Cohen, Kluwer Academic
Publishers, 1999. ISBN: 0-7923-8474-1

"JTRS JPEO Software Standards (Version 1.0)," SPAWAR Systems Center San Diego,
2006.

W3C Extensible Markup Language (XML)

http://xfront.com/BestPracticesHomepage.html

Microsoft Standards Reference - http://msdn2.microsoft.com/en-us/library/ms256177.aspx

Component Organization and Registration Environment - https://www.collab.core.gov/
CommunityBrowser.aspx?id=2234

Federal XML Naming and Design Rules - http://xml.coverpages.org/Federal-
NDR-20050609.pdf

W3C Extensible Markup Language (XML) 1.0 (Fourth Edition) - http://www.w3.0rg/TR/2006/
REC-xml-20060816/

W3 Schools XML Syntax Rules Tutorial - http://www.w3schools.com/xml/xml_syntax.asp

W3 Schools XML Validator Tutorial - http://www.w3schools.com/xml/xml_validator.asp

http://www.w3.0rg/2001/XMLSchema.xsd

http://www.xfront.com/xml-schema.html

http://www.xfront.com

http://www.xfront.com/ZeroOneOrManyNamespaces.pdf

http://www.xfront.com/DefaultNamespace.pdf

Page 679

http://www.plumtree.com/
http://www.plumtree.com/
http://c2.com/cgi/wiki?AdapterPattern
http://www.dofactory.com/Patterns/PatternProxy.aspx
http://c2.com/cgi/wiki?FacadePattern
http://www.webservicesarchitect.com/content/articles/hanson01.asp
http://www.webservicesarchitect.com/content/articles/hanson01.asp
http://jtrs.spawar.navy.mil/s
http://www.omg.org/cgi-bin/doc?formal/02-08-01.pdf
http://www.omg.org/docs/formal/05-02-02.pdf
http://sbc.omg.org/swradio_info.htm#WIP
http://en.wikipedia.org/wiki/Software_Communications_Architecture
http://www.w3.org/XML/
http://xfront.com/BestPracticesHomepage.html
http://msdn2.microsoft.com/en-us/library/ms256177.aspx
https://www.collab.core.gov/CommunityBrowser.aspx?id=2234
https://www.collab.core.gov/CommunityBrowser.aspx?id=2234
http://xml.coverpages.org/Federal-NDR-20050609.pdf
http://xml.coverpages.org/Federal-NDR-20050609.pdf
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3schools.com/xml/xml_syntax.asp
http://www.w3schools.com/xml/xml_validator.asp
http://www.w3.org/2001/XMLSchema.xsd
http://www.xfront.com/xml-schema.html
http://www.xfront.com
http://www.xfront.com/ZeroOneOrManyNamespaces.pdf
http://www.xfront.com/DefaultNamespace.pdf

R1129

R1130

R1131

R1132

R1133

R1134

R1135

R1136

R1137

R1138

R1139

R1140

R1141

R1142

R1143

R1144

R1145

R1146

R1147

R1148

R1149

R1150

R1151

Part 5: Developer Guidance
Extensible Content Models - http://www.xfront.com/ExtensibleContentModels.pdf

Element versus Type - http://www.xfront.com/ElementVersusType.pdf

XML Schema Part 2: Datatypes Second Edition - http://www.w3.0org/TR/xmlschema-2/#built-
in-datatypes

Composition versus Subclassing - http://www.xfront.com/composition-versus-
subclassing.html

http://www.w3.org/TR/xpath

http://www.w3schools.com/xpath/default.asp

XPath (Wikipedia) - http://en.wikipedia.org/wiki/XPath

HOWTO: Write Namespace-Agnostic XPath and XSLT - http://jcooney.net/
archive/2005/08/09/6517.aspx

http://www.w3.0rg/DOM/

http://www.saxproject.org/

Department of Defense Instruction 5000.2, "Operation of the Defense Acquisition System,"
Section 3.7 and Enclosure 7

Human Engineering MIL-STD 1472F, section 5.14 "User Computer Interface"

"Guide for developing usable and useful web sites" [http://usability.gov]

"Microsoft Windows User Experience: Official Guidelines for User Interface Developers and
Designers,” Redmond, WA: Microsoft Press, 1999

"Apple Human Interface Guidelines," Apple Computer, Inc., 2004 [http://
developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/
index.html]

"Seven Common Mistakes in Designing a Usable Portal," lozzo, N., 2002 [http://
www.tandemseven.com/pdf/T7_Seven_Common_Mistakes.pdf]

"The GNOME Usability Project. GNOME Human Interface Guidelines (1.0)," [http://
developer.gnome.org/projects/gup/hig/1.0/]

"Java Look and Feel Design Guidelines: Advanced Topics,"” Sun Microsystems, Inc., 2001
"Java Look and Feel Design Guidelines. Second Edition,” Sun Microsystems, Inc., 2001

"Designing Interfaces: Patterns for Effective Interaction Design," Tidwell, J., O'Reilly Media,
Inc., 2006

"Common Presentation Layer Guide Standard 03-01," NAVSEA, September 2006

"C++ Coding Standards, 101 Rules, Guidelines and Best Practices," Herb Sutter and Andrei
Alexandrescu, Addison-Wesley, 2004. ISBN: 0-321-11358-6

"Web-Based Portal Computer-Human Interface Guidelines," Ahlstrom, V. & Allendoerfer, K.,
2004 [http://hf.tc.faa.gov/products/bibliographic/tn0423.htm]

Page 680

http://www.xfront.com/ExtensibleContentModels.pdf
http://www.xfront.com/ElementVersusType.pdf
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.xfront.com/composition-versus-subclassing.html
http://www.xfront.com/composition-versus-subclassing.html
http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/default.asp
http://en.wikipedia.org/wiki/XPath
http://jcooney.net/archive/2005/08/09/6517.aspx
http://jcooney.net/archive/2005/08/09/6517.aspx
http://www.w3.org/DOM/
http://www.saxproject.org/
http://usability.gov
http://www.tandemseven.com/pdf/T7_Seven_Common_Mistakes.pdf
http://www.tandemseven.com/pdf/T7_Seven_Common_Mistakes.pdf
http://developer.gnome.org/projects/gup/hig/1.0/
http://developer.gnome.org/projects/gup/hig/1.0/
http://hf.tc.faa.gov/products/bibliographic/tn0423.htm

R1152

R1154

R1155

R1156

R1157

R1159

R1160

R1161

R1162

R1163

R1164

R1165

R1172

R1176

R1177

R1199

R1202

R1203

Part 5: Developer Guidance

"Web Application Design Handbook: Best Practices for Web-Based Software," Fowler, S. &
Stanwick, V., San Francisco: Morgan Kaufmann Publishers, 2004.

"Federal IT Accessibility Initiative," [http://www.section508.gov/]

"Electronic and Information Technology Accessibility Standards,” Federal Register, [http://
www.access-board.gov/sec508/508standards. pdf]

"Web Content Accessibility Guidelines 1.0," W3C, [http://www.w3.0rg/TR/WAI-
WEBCONTENT/]

"Guidelines for Keyboard User Interface Design," Microsoft Corporation [http://
msdn.microsoft.com/library/?url=/library/en-us/dnacc/html/ATG_KeyboardShortcuts.asp]

"Internationalization Best Practices: Specifying Language in XHTML & HTML Content,"
W3C, [http://www.w3.0rg/TR/i18n-html-tech-lang/]

"Internationalization Quick Tips for the Web," W3C [http://www.w3.org/International/
quicktips/]

"Developing and Localizing International Software," Madell, T., Parsons, C. & Abegg, J.,
Englewood Cliffs, NJ: Prentice Hall, 1994

"Programming for the World: A Guide to Internationalization," O'Donnell, S.M., Englewood
Cliffs, NJ: Prentice Hall, 1994

"Software Internationalization and Localization: An Introduction,” Uren, E., Howard, R. &
Perinotti,T., New York: Van Nostrand Reinhold, 1993

DoD Directive 5000.1, The Defense Acquisition System, 12 May 2003 (certified current as
of 24 November 2003); http://www.dtic.mil/whs/directives/corres/pdf/500001p.pdf.

DoD Instruction 5000.2, Operation of the Defense Acquisition System, 12 May 2003; http://
www.dtic.mil/whs/directives/corres/pdf/500002p.pdf.

DoD Net-Centric Data Strategy, DoD Chief Information Officer, 9 May 2003, http://
www.defenselink.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092. pdf.

Net-Centric Operations and Warfare Reference Model (NCOW RM), v1.1, 17 November
2005.

Net-Centric Checklist, V2.1.3, Office of the Assistant Secretary of Defense for Networks
and Information Integration/Department of Defense Chief Information Officer, 12 May 2004;
http://www.defenselink.mil/cio-nii/docs/NetCentric_Checklist v2-1-3 .pdf.

DoD Instruction 8580.1, Information Assurance (IA) in the Defense Acquisition System
This instruction implements policy, assigns responsibilities, and prescribes
procedures necessary to integrate Information Assurance (IA) into the Defense
Acquisition System; describes required and recommended levels of IA activities
relative to the acquisition of systems and services; describes the essential elements
of an Acquisition IA Strategy, its applicability, and prescribes an Acquisition 1A
Strategy submission and review process.

OMG Data Distribution Service for Real-time Systems Version 1.2

OMG Data Distribution Portal (http://portals.omg.org/dds)

Page 681

ttp://www.section508.gov/
http://www.access-board.gov/sec508/508standards.pdf
http://www.access-board.gov/sec508/508standards.pdf
http://www.w3.org/TR/WAI-WEBCONTENT/
http://www.w3.org/TR/WAI-WEBCONTENT/
http://msdn.microsoft.com/library/?url=/library/en-us/dnacc/html/ATG_KeyboardShortcuts.asp
http://msdn.microsoft.com/library/?url=/library/en-us/dnacc/html/ATG_KeyboardShortcuts.asp
http://www.w3.org/TR/i18n-html-tech-lang/
http://www.w3.org/International/quicktips/
http://www.w3.org/International/quicktips/
http://www.dtic.mil/whs/directives/corres/pdf/500001p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500002p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500002p.pdf
http://www.defenselink.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf
http://www.defenselink.mil/cio-nii/docs/Net-Centric-Data-Strategy-2003-05-092.pdf
http://www.defenselink.mil/cio-nii/docs/NetCentric_Checklist_v2-1-3_.pdf
http://www.dtic.mil/whs/directives/corres/pdf/i85801_070904/i85801p.pdf
http://www.omg.org/docs/formal/07-01-01.pdf
http://portals.omg.org/dds

R1206

R1217

R1222

R1223

R1232

R1237

R1239

R1243

R1289

R1290

R1292

R1293

R1294

R1295

R1296

R1297

R1298

Part 5: Developer Guidance

DoD Instruction 8520.2; 1 April 2004; Public Key Infrastructure (PKI) and Public Key (PK)
Enabling; http://www.dtic.mil/whs/directives/corres/pdf/852002p.pdf

DoD 8320.02-G, April 12, 2006, Guidance for Implementing Net-Centric Data Sharing;
http://www.dtic.mil/whs/directives/corres/pdf/832002g.pdf

NIST SP 800-95, "Guide to Secure Web Services" dated August 2007
http://csrc.nist.gov/publications/nistpubs/800-95/SP800-95.pdf

WS- Profiles: http://www.ws-i.org/deliverables/Default.aspx

DoD Directive 5230.9, Clearance of DoD Information for Public Release, 09 April 1996
Web Services Interoperability (WS-1) Basic Security Profile, http://www.ws-i-org

NCIDs Global Information Grid Net-Centric limplementation Document - Service Definition
Framework (S300), 21 December 2005

Web Services Security (WSS) SOAP Message Security 1.0 (WS-Security 2004) OASIS
Standard 200401, March 2004 (http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-
soap-message-security-1.0)

Javadoc Tool Home Page, http://java.sun.com/j2se/javadoc/

XML Documentation Comments (C# Programming Guide), http://msdn2.microsoft.com/en-
us/library/b2s063f7.aspx

DoD Instruction 8552.01, Use of Mobile Code Technologies in DoD Information
Systems, 23 October 2006 (available at http://www.dtic.mil/whs/directives/corres/
pdf/855201p.pdf)

Space and Naval Warfare Systems Command (SPAWAR), DOD Domain Controller
Public Key Infrastructure (DOD-PKI) Domain Controller Administrator Operations
Guide (DCAOP), 30 May 2006; https://infosec.navy.mil/clt/index.jsp (user registration and
DoD PKI Certificate required for access)

United States Air Force Public Key Infrastructure System Program Office (USAF PKI
SPO), Configuration and Operations Guide For Air Force Smart Card Certificate-
Based Logon Using DoD PKI Domain Controller Certificates, April 2006; https://
afpki.lackland.af.mil/html/sclogon.asp (DoD PKI Certificate required for access)

Army IA NETCOM, Common Access Card (CAC) Cryptographic Logon (CCL)
Technical Configuration Guide, V 1.0, February 2006; https://www.us.army.mil/suite/
page/237211; user account (Army or Defense Knowledge Online, AKO or DKO) and DoD
PKI Certificate required for access)

USMC, Cryptographic LogOn Enabler (CLOE) version 1 formerly Logon EDI-PI
Attribute Populator (LEAP) Installation, Configuration and Operations Guide,
February 2006. https://www2.mcnosc.usmc.mil/NR/rdonlyres/38542F70-263A-469C-
B5E8-7F2002D85EF6/0/CLOE_COperations_Guide.doc (DoD PKI Certificate required for
access)

DoD Directive 8190.3, Smart Card Technology, 31 August 2002; http://www.dtic.mil/whs/
directives/corres/pdf/819003p.pdf

Carnegie Mellon University Software Engineering Institute CERT, Secure Coding
Standards; https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure
+Coding+Standards

Page 682

http://www.dtic.mil/whs/directives/corres/pdf/852002p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/832002g.pdf
http://csrc.nist.gov/publications/nistpubs/800-95/SP800-95.pdf
http://www.ws-i.org/deliverables/Default.aspx
http://www.dtic.mil/whs/directives/corres/pdf/523009p.pdf
http://java.sun.com/j2se/javadoc/
http://msdn2.microsoft.com/en-us/library/b2s063f7.aspx
http://msdn2.microsoft.com/en-us/library/b2s063f7.aspx
http://www.dtic.mil/whs/directives/corres/pdf/855201p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/855201p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/855201p.pdf
https://infosec.navy.mil/clt/index.jsp
https://afpki.lackland.af.mil/html/sclogon.asp
https://afpki.lackland.af.mil/html/sclogon.asp
https://www.us.army.mil/suite/page/237211
https://www.us.army.mil/suite/page/237211
https://www2.mcnosc.usmc.mil/NR/rdonlyres/38542F70-263A-469C-B5E8-7F2002D85EF6/0/CLOE_Operations_Guide.doc
https://www2.mcnosc.usmc.mil/NR/rdonlyres/38542F70-263A-469C-B5E8-7F2002D85EF6/0/CLOE_Operations_Guide.doc
http://www.dtic.mil/whs/directives/corres/pdf/819003p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/819003p.pdf
https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards

R1299

R1300

R1301

R1302

R1303

R1304

R1305

R1306

Part 5: Developer Guidance
Common Weakness Enumeration; http://cwe.mitre.org/index.html

Open Web Application Security Project (OWASP), Top Ten Most Critical Web Application
Security Vulnerabilities; http://www.owasp.org/index.php/OWASP_Top_Ten_Project

Carnegie Mellon University Software Engineering Institute CERT, C++ Secure Coding
Standard; https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure
+Coding+Standards

Microsoft Developer Network (MSDN), Secure Coding Guidelines for the .NET
Framework; http://msdn2.microsoft.com/en-us/library/aa302372.aspx

Sun Microsystems, Secure Coding Guidelines for the Java Programming Language;
http://java.sun.com/security/seccodeguide.html

University of Virginia, Department of Computer Science, Inexpensive Program Analysis
Group, Splint - Secure Programming Lint; http://Iclint.cs.virginia.edu/

Sun Microsystems, Java Annotations; http://java.sun.com/docs/books/tutorial/java/javaO0O/
annotations.html

Microsoft Developer Network (MSDN), Selective Nodification of the Behavior of
Compiler Warning Messages; http://msdn2.microsoft.com/en-us/library/ms879818.aspx

Page 683

http://cwe.mitre.org/index.html
http://www.owasp.org/index.php/OWASP_Top_Ten_Project
https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards
http://msdn2.microsoft.com/en-us/library/aa302372.aspx
http://java.sun.com/security/seccodeguide.html
http://lclint.cs.virginia.edu/
http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html
http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html
http://msdn2.microsoft.com/en-us/library/ms879818.aspx

